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Abstract

In this paper we describe error estimates for a finite element approximation to partial differential systems describing two-phase immis-
cible flows in porous media, with applications to heap leaching of copper ores. These approximations are based on mixed finite element
(MFE) methods for the pressure and velocity and finite volume (FV) for the saturation. The fluids are considered incompressible.
Numerical results for heap leaching simulation are presented.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We can use the knowledge, experience and physical intu-
ition accumulated in the hydrological sciences and petro-
leum engineering to simulate, optimize and improve heap
leaching operations today. Leaching is a mass transfer pro-
cess between the leaching solution (fluid phase) and the ore
bed (solid phase) [1,2]. The heap leaching process can be
considered as a multiphase flow phenomenon in a porous
medium, where the fluid phase is composed by a liquid
(leach solution) and a gas [3,4]. Two distinct phenomena
are of interest in the study of heap leaching: the fluid flow
and the physicochemical reactions [5]. These two phenom-
ena can be studied separately if the extent of leaching does
not influence the flow pattern. In other words, the flow pat-
tern in a heap depends on the initial conditions of the heap
only. In general, researchers in heap leaching have sepa-
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rated the fluid flow problem from the physicochemical
problem.

In this paper, we study the convergence of a numerical
scheme for the fluid flow model. We use the classical
two-phase flow equations, which can be rewritten in differ-
ential formulations so that the coupling and nonlinearity
are weakened. These formulations include, phase, global,
and weighted formulations. We consider the global formu-
lation, specifically, the fractional flow formulation for two-
phase immiscible and incompressible fluids.

It is well known that advective transport in diffusive
effects dominates for two-phase flow equations in porous
media. Hence, it is important to obtain accurate approxi-
mate fluid velocities. This motivates the use of mixed finite
element methods for the computation of pressure and
velocity, due to the convection–diffusion control of the sat-
uration equation, efficient and accurate approximations
should be used to solve this equation. On the other hand,
finite volume methods should be considered for the compu-
tation of the leaching equation, resolving shock fronts in a
proper manner.

MFE–FV schemes for two phase flow models were
first proposed by Durlofsky [6] (see also [7]) without a
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Fig. 1. Mathematical domain (transversal cut of the heap).
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convergence analysis. A results of convergence for a partic-
ular case of two phase flow system, with linear flux,
non-degeneracity of the diffusion terms, and without grav-
itational effects, were proved by Ohlberger [8]. A fully dis-
crete finite element analysis of multiphase flow in
groundwater hydrology was given by Chen and Ewing [9]
for smooth solutions of for fractional flow formulation,
with a constant liquid density and a gaseous density
depending on the global pressure. An error estimates for
finite approximations of the system, which are based on
MFE methods for pressure and velocity and characteristic
finite element methods for saturation was proved by Chen
[10]. A procedure which consisted in a MFE method for
pressure equation and an upwind scheme was considered
by Chavent and Jaffré [11]. It is based on a discontinuous
finite element approximation associated with a slope limiter
for the saturation equation. In degenerate cases, i.e., when
the diffusion term becomes zero for some saturation values,
Chen and Ewing [12] considered a finite element approxi-
mation where the elliptic equation for the pressure and
velocity is approximated by a mixed finite element method,
while the degenerate parabolic equation for the saturation
is approximated by a Galerkin finite element method.

A more detailed and extensive review of different numer-
ical methods for classical two phase equations, for immis-
cible and incompressible flow, can be found in the paper
of Chavent and Jaffré [11], in the reservoir simulation con-
text, and in the paper of Helmig [13], in the environmental
engineering context.

The aim of this paper is to study convergence for the
two phase flow system with applications to heap leaching
of copper ores. This is done by proving an a priori error
estimate. Our proof follows the main ideas of Ohlberger
[8]. But, additionally, our model consider a nonlinear con-
vective term and a nonlinear gravitational term both of
which are very important in heap leaching, because the
flow is mainly vertical. In contrast to [8], our problem con-
sider non-homogeneous Neumann boundary conditions,
which corresponds to the physical behavior of the irriga-
tion and infiltration processes in Heap Leaching. Finally,
we obtain numerical results, with experimental parameters
from the copper industry in Chile.

The paper is organized as follows. In Section 2, we state
the continuous problem. In Section 3 we state the discrete
problem. In Section 4 we present the main convergence
results. In Section 5 we develop some preliminary results,
which will be useful in the convergence analysis. In Section
6 we proof the convergence of the semi discrete scheme. In
Section 7 we proof the convergence of the fully discrete
scheme. Finally, in Section 8 we present results of the
numerical experiments.

2. Statement of the continuous problem

In this section we present the classical two phase immis-
cible and incompressible flow equations for the fluid flow
problem in the context of Heap Leaching. Next, we define
a fractional flow formulation for the degenerate and non-
degenerate case in a weak form. Finally, we define a model
problem for our convergence analysis.
2.1. Physical problem

In this paper we consider two dimensional geometry,
i.e., a transversal cut of the heap (Fig. 1). The boundary
oX of the domain X � R2 is expressed as oX ¼ Ci [
Co [ Cl [ Cr, where Ci is the input boundary (zone of irriga-
tion), Co is the output boundary (zone of drainage), Cl is
the left boundary and Cr is the right boundary. In particu-
lar, in the context of heap leaching, we can assume that the
porosity /, and the densities qw and qn are constants, that
there are no source terms qw ¼ qn ¼ 0, and that K ¼ kI rep-
resents the intrinsic permeability tensor as a characteristic
property of the porous matrix only. Therefore, the physical
problem for the fluid flow in heap leaching process is given
by the following system (see [14] and [13]):

/
osw

ot
þr � vw ¼ 0; ð1Þ

/
osn

ot
þr � vn ¼ 0; ð2Þ

vw ¼ �k
krw

lw

ðrpw � qwgÞ; ð3Þ

vn ¼ �k
krn

ln

ðrpn � qngÞ; ð4Þ

pcðswÞ ¼ pn � pw; ð5Þ

sw þ sn ¼ 1 ð6Þ

for all x 2 X, and t > 0, where sa is the saturation, with
a ¼ w denoting the leaching solution and a ¼ n denoting
the gaseous phase, va is the volumetric velocity, la is the vis-
cosity, kra is the relative permeability, g ¼ ð0;�gÞ;
g ¼ 9:8 ½m=s2�, is the gravitational, downward-pointing,
constant vector, and pc is the capillary pressure. Addition-
ally, we assume the following initial conditions:

swðx; 0Þ ¼ so
w; pnðx; 0Þ ¼ pA
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for all x 2 X, where pa is the pressure, so
w is the initial sat-

uration, pA is the atmospheric pressure, and we assume
the boundary conditions

ðvw � nÞðx; tÞ ¼ �R; x 2 Ci;

ðvw � nÞðx; tÞ ¼ 0; x 2 Cr [ Cl;

ðrpw � nÞðx; tÞ ¼ 0; x 2 Co;

ðrsn � nÞðx; tÞ ¼ 0; x 2 Cr [ Cl [ Ci;

ðvn � nÞðx; tÞ ¼ 0; x 2 Co

for all t > 0, and where R ¼ RðtÞP 0 is the irrigation ratio.
In what follows we will omit w in sw.

2.2. Fractional flow formulation

Eqs. (1)–(6) can be rewritten in a different differential
formulations so that the coupling and nonlinearity are
weakened. This paper follows the fractional flow formula-
tion [11], i.e., a formulation in terms of a saturation and a
global pressure. The main reason for this fractional flow
approach is that efficient numerical methods can be devised
to take advantage of the many physical properties inherent
in to flow equations [9]. Now we introduce the total mobil-
ity kðsÞ :¼ kw þ kn, where kaðsÞ :¼ kra=la are the phase
mobilities for a ¼ w; n, faðsÞ :¼ ka=k the fractional flow
functions, and the total velocity given by u :¼ vw þ vn.
Note that adding (1) and (2), and using (6), we obtain
r � u ¼ 0. Additionally, following [11], we define the global
pressure

p :¼ pn �
Z s

0

ðfwp0cÞðx; nÞdn; ð7Þ

noting that rp ¼ rpn � fwrpc.

2.2.1. Weakly degenerate formulation

Summing (3) and (4), and using the gradient computa-
tion of (7), we obtain the total velocity

u ¼ vw þ vn ¼ �kkðrp � GkgÞ; ð8Þ

where Gk :¼ ðkwqw þ knqnÞ=k. On the other hand, manipu-
lating Eqs. (3) and (4), we obtain knvw � kwvn ¼
knkwðrpc þ ðqw � qnÞgÞ, and using (8), we deduce

vw ¼ fwðsÞu� DwðsÞrs� GwðsÞg; ð9Þ
vn ¼ fnðsÞu� DnðsÞrsn þ GnðsÞg; ð10Þ

where

DwðsÞ :¼ �kknðsÞfwðsÞp0cðsÞ;
DnðsÞ :¼ �kkwðsÞfnðsÞp0cðsÞ;
GwðsÞ :¼ �kknðsÞfwðsÞðqw � qnÞ;
GnðsÞ :¼ �kkwðsÞfnðsÞðqw � qnÞ:

Therefore, collecting (8)–(10) we define an alternative for-
mulation for the system (1)–(6) which is called Fractional
Flow Formulation
r � u ¼ 0; ð11Þ
u ¼ �kkðrp � GkgÞ; ð12Þ

/
os
ot
¼ �r � ðfwu� Dwrs� GwgÞ ð13Þ

for all x 2 X and t > 0, with the initial conditions

sðx; 0Þ ¼ so
w pðx; 0Þ ¼ po ð14Þ

for all x 2 X, and the boundary conditions

ðu � nÞðx; tÞ ¼ u1ðsðx; tÞÞ; ðvw � nÞðx; tÞ ¼ u2ðsðx; tÞÞ ð15Þ
for all x 2 C and t > 0, where the functions u1 and u2 are
know from previous expressions. Note that the Eq. (13) is
parabolic and weakly degenerate, because DwðswrÞ ¼ 0 and
Dwð1Þ ¼ 0, where swr is the residual saturation for the li-
quid phase.

2.2.2. Non-degenerate formulation

Rather than a saturation, a complementary pressure was
introduced by Chen [15]. In this form, the system formally
appears to be non-degenerate. In effect, the complementary
pressure, i.e., the Kirchhoff transformation, is defined as

h :¼ �
Z s

0

ðknfwp0cÞðx; nÞdn; ð16Þ

where s is related to h through s ¼SðhÞ, where Sðx; hÞ is
the inverse of (16) for 0 6 h 6 h� with h�ðxÞ :¼
�
R 1

0 knfwp0cðx; nÞdn. From this definition we obtain alterna-
tives expressions for u, vw and vn, given by

u ¼ �kðkðsÞrp þ c01ðsÞÞ;
vw ¼ �kðrhþ kwðsÞrp þ c02ðsÞÞ ¼ fwðsÞu� krh� kc2ðsÞ;
vn ¼ kðrh� knðsÞrp þ c03ðsÞÞ;

where the definition of c0i; i ¼ 1; 2; 3 and c2 can be found in
[15] and [12]. Therefore, we obtain an non-degenerate alter-
native formulation for the system Eqs. (1)–(6) given by

r � u ¼ 0; ð17Þ
u ¼ �kðkrp þ c01Þ; ð18Þ

/
os
ot
¼ �r � ðfwðsÞu� krh� kc2ðsÞÞ; ð19Þ

in the unknowns u, p, and h, with the initial and boundary
conditions similar to (14) and (15). The differential system
has a clear structure; the pressure equation is elliptic for p

and the saturation equation is parabolic for h (degenerate
for s). Its mathematical properties such as existence,
uniqueness, regularity and asymptotic behavior of solution
have been studied by Chen [15,16].

2.3. Weak formulation

Define the spaces as

VðgÞ :¼ fv 2 Hðdiv; XÞjv � n ¼ g; oXg;

W :¼ v 2 L2ðXÞ
Z

X
vðx; tÞdx ¼ 0

����� �
;
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and M :¼ H 1ðXÞ. Define the bilinear forms A and B as
Aðn; v;wÞ ¼

R
X aðnÞv � w and Bðv;uÞ :¼ �

R
X ur � v. Intro-

ducing the weak form of the system (17)–(19): find
u 2 L1ðJ ; V ðu1ÞÞ; p 2 L1ðJ ; W Þ, and h 2 L2ðJ ; MÞ such
that s ¼SðhÞ; /ots 2 L2ðJ ; M 0Þ; 0 6 hðx; tÞ 6 h�ðxÞ a.e.

on XT,

Bðu; vÞ ¼ 0; ð20Þ
Aðs; u; vÞ þ Bðv; pÞ ¼ ðc1ðsÞ; vÞ; ð21ÞZ t

0

ð/ots; vÞdsþ
Z t

0

ðvw;rvÞds ¼ �
Z t

0

ðu2ðsÞ; vÞC ds ð22Þ

for all v 2 L1ðJ ; W Þ, for all v 2 L1ðJ ; V ð0ÞÞ, for all v 2
L2ð0; t; MÞ; t 2 J , where aðsÞ :¼ ðkkðsÞÞ�1 and c1ðsÞ :¼
�c01ðsÞ=kðsÞ.

Under physically reasonable assumptions on the data
and the assumption that X is a multiply-connected domain
with Lipschitz boundary C, the system (17)–(19) has a weak
solution in the weak sense of (20)–(22). Under additional
assumptions on the data, it was shown by Chen [15] and
[16], that s is Hölder continuous on XT and the weak solu-
tion is unique.

2.4. Model problem for convergence analysis

In Heap Leaching it is physically reasonable to assume
that a residual saturation 0 < swr < 1, an initial saturation
0 < so

w < 1 and a saturation of stability 0 < se
w < 1 of the

leaching solution exist, such that the capillary diffusion
coefficient Dw, in (13), satisfies

0 < DwðswrÞ < Dwðso
wÞ 6 DwðsÞ 6 Dwðse

wÞ < 1;

where 0 < swr < so
w < se

w < 1. For our convergence analysis
we consider the system (11)–(13), under the assumptions
that it is not degenerate. In order to simplify our conver-
gence analysis we replace the nonlinear function Dw in
(13) by the constant � > 0 defined as

� :¼ 1

jX� J j

Z
X�J

Dwðsðx; tÞÞdxdt;

where J :¼ ð0; T Þ. Additionally, we consider vectorial func-
tions d and e such that dðsðx; tÞÞ � n ¼ u1ðsðx; tÞÞ, and
eðsðx; tÞÞ � n ¼ u2ðsðx; tÞÞ, with x 2 oX, and define the new
unknowns w and uw as

wþ dðsðx; tÞÞ ¼ u;

uw þ eðsðx; tÞÞ ¼ vw

with x 2 X; t > 0, then, the homogeneous Neumann
boundary condition holds for w and uw. Now, we introduce
these simplifications in the system (11)–(15) to obtain our
Model Problem for the convergence analysis, maintaining
the notation u for the total velocity.

Definition 1. Let X � R2 be a convex polygonal bounded
domain, J :¼ ð0; T Þ a time interval and XT :¼ X� J . A
mapping ðu; p; sÞ : XT ! R� R� R2 is called a Strong
Solution of the model problem if for all ðx; tÞ 2 XT :
r � u ¼ �F ðsÞ; ð23Þ

u ¼ �kkðrp �GðsÞÞ; ð24Þ

/
os
ot
þr � ðfðsÞ � �rsÞ ¼ QðsÞ; ð25Þ

where fðsÞ :¼ fwðsÞu�GwðsÞg�eðsÞ; F ðsÞ :¼r�dðsÞ; QðsÞ :¼
�r� ½fwðsÞdðsÞþeðsÞ� and GðsÞ :¼GkðsÞg�ðkkÞ�1ðsÞdðsÞ.
The initial conditions are given by

sðx; 0Þ ¼ so; pðx; 0Þ ¼ po ð26Þ
for all x 2 X and the boundary conditions are given by

u � n ¼ 0; ðfðsÞ � �rsÞ � n ¼ 0 ð27Þ
for all x 2 C and t > 0.
3. Statement of the discrete problem

3.1. Notation and assumptions

We follow a classical notation for unstructured grid for
VF and MFE-VF methods used previously in [8,17,18]. Let
Th :¼ fT ij is a triangle, i 2 I � Ng be a unstructured trian-
gulation with fineness h of a bounded domain X � R2. We
assume that the following properties are satisfied:

(1) X ¼
S

T2Th
T .

(2) For T i 6¼ T j 2Th one and only one of the following
properties hold: T i

T
T j ¼ ; or T i

T
T j ¼ common

node of T i; T j or T i
T

T j ¼ common edge of T i; T j.
(3) h :¼ supT2Th

diamðT Þ <1.
(4) For any angle h of a triangle of Th, one has:

0 < h < p=2.
(5) There exists a1 > 0; a2 > 0 and h > 0 such that
8T 2Th and for any edge a of the mesh, b1h2

6

jT j 6 b2h2, and a1h 6 lðaÞ 6 a2h.

Additionally, we shall use the following notation for the
unstructured triangulation:

jT ij: area of Ti,
xi: midpoint of the ambit of Ti,
N j: set of neighbour triangles of Tj,
Sij: joint edge of Ti and Tj,
nij: outward unit normal to Ti in direction T j; j 2 Nj,
A: set of all edges of Th,
l(a): length of edge a,
dðxi; SijÞ: distance from xi to the edge Sij.

If f ð�; tÞ is a piecewise continuous function on Th and p,
u, s is a solution of the model problem, we define in addi-
tion for ðx; tÞ 2 XT :

fj ¼ 1
T j

R
T j

f ðx; tÞdx.
sjðtÞ: a constant approximation of sð�; tÞ on T j 2Th.
naðtÞ: unit normal to edge a 2A at time t, such thatR

a uðx; tÞ � naðtÞdr P 0.
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T�a : the neighbour triangle of a, such that na is the outer
(inner) normal of T�a .

sþa ðtÞ: the upstream choice of sð�; tÞ on the edge a 2A.
da :¼ dðxþa ; aÞ þ dðx�a ; aÞ.
ca :¼ lðaÞ=da, j :¼ mina2Aca, and � :¼ maxa2Aca.
For any variable p, some times we use pþa ¼ pTþa and
p�a ¼ pT�a in order to lighten the notation.

Furthermore, we shall use the following notation for the
time discretization:

J h :¼ ftn 2 J jtn ¼ nDt; with n 2 f0; . . . ;Mg;
such that MDt ¼ Tg

f nðxÞ :¼ f ðx; tnÞ; for any function f ðx; tÞ:

For given discrete data sn
i let the global function shð�; tnÞ be

defined as sn
i :¼ shðx; tnÞjT i

for all T i 2Th and the global
function s 2 L2ðXÞ we define the interpolation IhðsÞ as:

Ihðsð�; tÞÞjT i
:¼ sðxi; tÞ for all T i 2Th:

The corresponding finite dimensional subspace of L2ðXÞ is
defined as:

l2ðXÞ :¼ fv 2 L2ðXÞjvjT ¼ const; 8T 2Thg
with the norm kshk2

l2ðXÞ :¼
P

T j2Th
T js2

j .
Finally, let ½sh�a :¼ sþa � s�a be the jump of sh over an

edge a 2A.

Remark 2. If ðu; p; sÞ is a sufficiently smooth solution of the
model problem, then we have, for all T j 2Th,
/ðotsÞj þ ðLðuÞsÞj ¼ ðQðsÞÞj; ð28Þ

where LðuÞs :¼ r � ðfðsÞ � �rsÞ.
3.2. The mixed finite element part

Let Vh and Wh finite dimensional subspaces of
V :¼ Vð0Þ and W, defined as

W h :¼ fwh 2 W jwhjT ¼ const; 8T 2Thg
and Vh is a lowest order Raviart–Thomas space.

Definition 3. For fixed t 2 J let shðx; tÞ be given. Then the
mixed finite element scheme for the Eqs. (23) and (24) is
defined as: find ðuh; phÞ 2 Vh � W h, such that, for all
ðvh;uhÞ 2 Vh � W h:
Bðuh;uhÞ ¼ ðF ðshÞ;uhÞ; ð29Þ
Aðsh; uh; vhÞ þ Bðvh; phÞ ¼ ðGðshÞ; vhÞ: ð30Þ
3.3. The finite volume part

We consider a cell centered finite volume scheme for the
Eq. (25) with the IBC (27), in the unknown s, i.e., the level
of saturation of leaching’s solution. For an arbitrary trian-
gle T j 2Th
/otsþr�ðfðsÞ� �rsÞ¼QðsÞ;

/
1

T j

Z
T j

otsdxþ 1

T j

Z
T j

r�ðfðsÞ� �rsÞdx¼ 1

T j

Z
T j

QðsÞdx;

/
1

T j

Z
T j

otsdxþ 1

T j

X
l2Nj

Z
Sjl

ðfðsÞ� �rsÞ �ndr¼ 1

T j

Z
T j

QðsÞdx:

From this last equality, we can define the discrete relation
(see [19])

/ðotshÞj þ
1

T j

X
l2Nj

F jl ¼ ðQðshÞÞj;

where F jlðu; shÞ :¼ gjlðu; shj; shlÞ � �cjlðshl � shjÞ, if Sjl \
oX ¼ ;; F jlðu; shÞ :¼ 0, otherwise, and gjlð�Þ is a Engquist–
Osher numerical flux given by

gjlðu; shj; shlÞ :¼ jSjlj½Uþjl þ U�jl�;

Uþjl ¼ Ujlð0Þ þ
Z shj

0

maxfU0jlðnÞ; 0gdn;

U�jl ¼
Z shl

0

minfU0jlðnÞ; 0gdn

ð31Þ

with UjlðsÞ :¼ fðsÞ � n. It is well know that the Engquist–
Osher numerical flux gjlð�Þ defined in (31), satisfies [19]:
for all r > 0, there exists a constant C ¼ CðrÞ > 0 such that
for all u; v; u0; v0 2 Brð0Þ

jgjlð�; u; vÞ � gjlð�; u0; v0Þj 6 CðrÞhðju� u0j þ jv� v0jÞ; ð32Þ

gjlð�; u; vÞ ¼ �gljð�; v; uÞ; ð33Þ

gjlð�; u; uÞ ¼ jSjljfðuÞ � njl: ð34Þ

Note that the inequality (32) is a local Lipschitz condition,
the identity (33) is the conservation property and the iden-
tity (34) is consistency. Finally, the semi discrete finite vol-
ume scheme is defined as

Definition 4. Let ðuhðx; tÞ; phðx; tÞÞ 2 Vh � W h for
ðx; tÞ 2 XT . Then shðx; tÞ is defined by the semi discrete
finite volume scheme as

/ðotshÞj þ ðLhðuhÞshÞj ¼ ðQðshÞÞj; 8T j 2Th; ð35Þ

where ðLhðwÞ1Þj :¼ 1
T j

P
l2Nj

F jlðw; 1Þ and shð�; 0ÞjT j
¼

ðsoð�ÞÞj. Additionally, the discrete inner product is defined
as ðLhðwÞ1; 1Þh :¼

P
jT j1jðLhðwÞ1Þj.
3.4. The combined schemes

3.4.1. The semi discrete scheme

Let ðu; p; sÞ be a weak solution of (23)–(25). We define
the semi discrete combined and decoupled MFE-FE
scheme for the model problem as follows:

Definition 5 (Coupled). Find ðuh; ph; shÞ : J ! Vh � W h�
l2ðXÞ with:



2546 E. Cariaga et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2541–2554
(1) ðuh; phÞ is a solution of the MFE scheme, i.e., for all
ðvh;uhÞ 2 Vh � W h:
Bðuh;uhÞ ¼ ðF ðshÞ;uhÞ; ð36Þ
Aðsh; uh; vhÞ þ Bðvh; phÞ ¼ ðGðshÞ; vhÞ: ð37Þ
(2) sh is a solution of the semi discrete FV scheme:
/ðotshÞj þ ðLhðuhÞshÞj ¼ ðQðshÞÞj ð38Þ

with shð�; 0ÞjT j
¼ ðsoð�ÞÞj.
Definition 6 (Decoupled). Given t 2 J , find ð~uðtÞ; ~pðtÞ;~sðtÞÞ
such that:

(1) ð~uðtÞ; ~pðtÞÞ 2 Vh � W h is a solution of:
Bð~uðtÞ;uhÞ ¼ ðF ðsÞ;uhÞ; 8uh 2 W h; ð39Þ
AðsðtÞ; ~uðtÞ; vhÞ þ Bðvh; ~pðtÞÞ ¼ ðGðsÞ; vhÞ; 8vh 2 Vh:

ð40Þ
(2) ~sð�; tÞ solves:
/ðotsÞj þ ðLhðuÞ~sÞj ¼ ðQðsÞÞj; ð41Þ
with ~sð�; 0ÞjT j
¼ ðsoð�ÞÞj, for all T j 2Th.
3.4.2. The full discrete scheme

Let ðu; p; sÞ be a weak solution of (23)–(25). We define
the full discrete combined and decoupled MFE-FE scheme
for the model problem as follows.

Definition 7 (Coupled). Find ðUh; P h; ShÞ : Jh ! Vh � W h�
l2ðXÞ with:

(1) Initial values: S0
j :¼ ðsoÞj, for all T j 2Th.

(2) For n ¼ 0 to M do:
(a) For given Shð�; tnÞ let ðUhð�; tnÞ; P hð�; tnÞÞ 2 Vh� W h

be defined as the solution of the MFE scheme,
such that, for all ðvh;uhÞ 2 Vh � W h:
BðUh;uhÞ ¼ ðF ðShÞ;uhÞ; ð42Þ
AðSh; Uh; vhÞ þ Bðvh; P hÞ ¼ ðGðShÞ; vhÞ: ð43Þ
(b) For given ðUhð�; tnÞ; P hð�; tnÞÞ calculate Shð�; tnþ1Þ
with the full discrete FV scheme, defined as:
/
Snþ1

hj � Sn
hj

Dt
þ ðLhðUhÞShÞj ¼ ðQðShÞÞj ð44Þ
for all T j 2Th.
Definition 8 (Decoupled). Find ð~u; ~p; eSÞ such that:

1. For each tn 2 J h: ð~uðtnÞ; ~pðtnÞÞ 2 Vh � W h is a solution
of (39) and (40).

2. eSð�; tnþ1Þ satisfies the initial condition eSo
j ¼ ðsoÞj for all

T j 2Th and for n ¼ 0 to M:
/
eS nþ1

j � eSn
j

Dt
þ ðLhðuÞeSÞj ¼ ðQðsÞÞj; ð45Þ

where eS nþ1
j :¼ eSðtnþ1ÞjT j

for all T j 2Th.
4. Main results

4.1. Convergence of the semi discrete scheme

Theorem 9. Let ðu; p; sÞ be a weak solution of (23)–(25) and

ðuh; ph; shÞ a solution of (36)–(38). Then, there exist constants

K1;K2 > 0, depending on some higher order Sobolev norms

of ðu; p; sÞ, but independent of h and �, such that:

ku� uhk2
L1ðJ ;V Þ þ kp � phk

2
L1ðJ ;W Þ þ ks� shk2

L1ðJ ;L2ðXÞÞ

þ �j
Z

J

X
a2A
½IhðsÞðtÞ � shðtÞ�2a dt 6 h2K1ð1þ expðK2T ÞÞ:

This theorem is proved at the end of Section 6, after some
previous results.
4.2. Convergence of the full discrete scheme

Theorem 10. Let ðu; p; sÞ be weak solution of (23)–(25) and

ðUh; P h; ShÞ solution of (42)–(44). If Dt satisfies the CFL

condition

Dt

h2
6 /

j

4�� 2
ð46Þ

then there exists a constant Ki > 0; i ¼ 3; 4; 5; 6, depending
on some higher order Sobolev norms of the exact solution,

but independent of h and � such that:

kuðtnÞ�Un
hk

2
V þkpðtnÞ� P n

hk
2
W þksðtnÞ� Sn

hk
2
L2ðXÞ

6K3h2þK4
h2

ð�jÞ2
þT

T

M/2
þ h2/
�j

� �
þ T

/
T

M/
þ h2

�j

� �" #
kfk2

L1ðXÞ

(

þ h
�j

� �2

kQðsÞ�/otsk2
L1ðXÞ þ

h2� 2

�j2
DðsÞ

þT
2

T
M
þ /

j�

� �
E� þK5h2
� �)

þK6kQk2
L1ðXÞ

with MDt ¼ T .

This theorem is proved at the end of Section 7, after
some previous results.

5. Preliminary results

We have the following estimates from the geometric
properties of an unstructured grid [8,17,18]:

Lemma 11. Let Th be a unstructured triangulation, T j;
T l 2 Th; x; y 2 T j [ T l; 1; d 2 l2ðXÞ; x 2 L2ðJ ; H 2ðXÞÞ,
g 2 H2ðXÞ. Then there exist constants C1; C2; C3 > 0,
independent of h, such that:

jxðxÞ � xðyÞj 6 C1kxkH2ðT j[T lÞ; ð47Þ

C2kdk2
l2ðXÞ 6

X
a2A
½d�2a 6

2

h2
kdk2

l2ðXÞ; ð48Þ

k1� dkL2ðXÞ ¼ k1� dkl2ðXÞ; ð49Þ
kg� dk2

L2ðXÞ 6 C3h2kgk2
H2ðXÞ þ kIhðgÞ � dk2

l2ðXÞ: ð50Þ
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On the other hand, we have the following estimates for
the numerical flux:

Lemma 12. Let w 2 V be a given vector. Then there exists

constants C4;C5 > 0, independent of h and �, such that:X
a2A

g2
aðw; 1þa ; 1

�
a Þ

" #1=2

6 C4hkfkL1ðXÞ; ð51Þ

X
a2A
ðotgaðw; 1þa ; 1

�
a ÞÞ

2

" #1=2

6 C5hkf 0kL1ðXÞkot1kL1ðXÞ: ð52Þ

Proof. By definition is enough to see that

gaðw; 1þa ; 1
�
a Þ 6 jSakUjlðmaxf1þa ; 1�a gÞj
6 a2hjfðmaxf1þa ; 1�a gÞj:

and then we obtain (51). On the other hand, by definition
and the application of the Leibnitz’s rule, we have

otgaðw; g; sÞ ¼ jSaj½otU
þ
a ðgÞ þ otU

�
a ðsÞ�

¼ jSaj ot

Z gðtÞ

0

maxfU0aðdÞ; 0gdd

	
þ ot

Z sðtÞ

0

minfU0aðdÞ; 0gdd



6 jSajmaxfjotgj; jotsjg sup

n
jU0aðnÞj:

and then we obtain (52). h

Finally, from (35) and the Hölder’s inequality we obtain
the following estimates for the operator Lh:

Lemma 13. For the discrete inner product ðLhðwÞ1; 1Þh we

have

(1) Coerciveness:
ðLhðwÞ1; 1Þh P �j
X
a2A
½1�2a þ

X
a2A
½1�agaðw; 1þa ; 1

�
a Þ:
(2) Boundedness:
ðLhðwÞ1; dÞh 6 ��
X
a2A
½1�2a

 !1=2

þ
X
a2A

g2
aðw; 1þa ; 1

�
a Þ

 !1=2
24 35
�

X
a2A
½d�2a

 !1=2

:

6. Convergence of the semi discrete scheme

Theorem 14. Let ðu; p; cÞ be the weak solution of (23)–(25).
If pðsÞ 2 H1ðXÞ, uðsÞ 2 ðH1ðXÞÞ2 and divuðsÞ 2 H 1ðXÞ for

any fixed time s 2 J , then the scheme (39), (40) has a unique
solution ð~uðsÞ; ~pðsÞÞ 2 Vh � W h and there exists a constant

K7 > 0, independent of h and sðsÞ, such that:

kðu� ~uÞðsÞkHðdiv;XÞ þ kðp � ~pÞðsÞkL2ðXÞ

6 K7hðjpðsÞjH1ðXÞ þ juðsÞjðH1ðXÞÞ2 þ jdivuðsÞjH1ðXÞÞ: ð53Þ
Proof. Clearly, the bilinear form Aðs; �; �Þ is coercive and
Bð�; �Þ satisfies the inf–sup condition. Then, using [20, The-
orem 1.1] we have that the scheme (39), (40) has a unique
solution ð~uðsÞ; ~pðsÞÞ 2 Vh � W h and there exists a constant
C6 > 0 such that

kðu� ~uÞðsÞkHðdiv;XÞ þ kðp � ~pÞðsÞkL2ðXÞ

6 C6 inf
vh2V h

kuðsÞ � vhkHðdiv;XÞ þ inf
wh2W h

kpðsÞ � whkL2ðXÞ

	 

:

Now, using standard approximation properties to estimate
the right hand side expression of this last inequality (see
[12]), we obtain (53). h

Theorem 15. Let ~s be the solution of (41) and ðu; p; sÞ the

weak solution of (23)–(25). Let eh be defined as

eh :¼ ~s� IhðsÞ. Then, for all t 2 J there exists a constant

K8 > 0, independent of h and �, such that the following esti-

mate holds:

�j
2

X
a

½ehðtÞ�2a 6 3K8

h2

�j
kfk2

L1ðXÞ þ kQðsÞ � /otsk2
L1ðXÞ

n
þ�� 2kDðsÞk2

L1ðXÞ

o
ðtÞ; ð54Þ

where DðsÞ :¼
P

06jaj62jDasj2.

Proof. for eh :¼ ~s� IhðsÞ we have

ðLhðuÞeh; ehÞh ¼ ��
X

a

½eh�a½IhðsÞ�aca þ
X

a

½eh�a eGa

þ
X

j

T jej½ðQðsÞÞj � /ðotsÞj�; ð55Þ

where eGa :¼ gaðu; ej; elÞ � gaðu;~sj;~slÞ. Using the coercive-
ness property of Lh from Lemma 13, we can estimate

�j
X

a

½eh�2a 6 t1 þ t2 þ t3; ð56Þ

with

t1 :¼ ��
X

a

½eh�a½IhðsÞ�aca; t2 :¼ �
X

a

½eh�agaðu;~sj;~slÞ;

t3 :¼
X

j

T jej½ðQðsÞÞj � /ðotsÞj�:

About t1, using the Hölder and Young inequalities,
we obtain for each h1 > 0 that t1 6

�
2
fh1

P
a½eh�2aþ

ð� 2=h1Þ
P

a½IhðsÞ�2ag, but by (47) and (48), there exist con-
stants C7;C8 > 0 such that

½IhðsÞ�2a ¼ jsðxþa ; tÞ � sðx�a ; tÞj
2
6 C7ksð�; tÞk2

H2ðTþa [T�a Þ

¼ C7

X
06jaj62

kDasð�; tÞk2
L2ðTþa [T�a Þ

6 C8h2 sup
Tþa [T�a

jD2ðsðx; tÞÞj;

where D2ðsðx; tÞÞ :¼
P

06jaj62jDasðx; tÞj2. Therefore, there
exists C9 > 0 such that
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t1 6
�

2
h1

X
a

½eh�2a þ
� 2

h1

C9h2kDðsÞk2
L1ðXÞ

( )
: ð57Þ

About t2, using the Hölder and Young inequalities and
Lemma 12, we obtain for each h2 > 0, that there exists a
constant C10 > 0, such that

t2 6
1

2
h2

X
a

½eh�2a þ
1

h2

C10h2kfk2
L1ðXÞ

( )
: ð58Þ

About t3, using Hölder and Young inequalities and the
inequality (48), we obtain for each h3 > 0, that there exist
constants C11;C12 > 0 such that

t3 6

X
j

T je2
j

 !1=2 X
j

T j ðQðsÞÞj � /ðotsÞj
h i2

 !1=2

6
1

2
h3kehk2

l2ðXÞ þ
1

h3

C11h2kQðsÞ � /otsk2
L1ðXÞ

� �	 

6

1

2
ðh3=C12Þ

X
a

½eh�2a þ
1

h3

C11h2kQðsÞ � /otsk2
L1ðXÞ

� �" #
:

ð59Þ

Finally, with h1 ¼ j=3, h2 ¼ �j=3 and h3 ¼ ð�j=3ÞC12, and
replacing (56)–(59) in (55), we get (54). h

Theorem 16. Let ~s be the solution of (41) and ðu; p; sÞ
the weak solution of (23)–(25). Let eh be defined as

eh :¼ ~s� IhðsÞ. Then there exists a constant K9 > 0, indepen-

dent of h and �, such that the following estimate holds, for all

t 2 J

�j
4

X
a

½oteh�2a 6
2K9h2

�j

�
�� 2 eD2ðotsÞ þ kf 0k2

L1ðXÞ þ kot~sk2
L1ðXÞ

þ kotQðsÞ � /ottsk2
L1ðXÞ

�
;

where ~DðotsÞ :¼ k
P
jaj62jDaðotsðtÞÞj2kL1ðXÞ.

Proof. First we will prove the following identity:

ðLhðuÞoteh; otehÞh ¼
X
a2A
½oteh�agaðu; oteþa ; ote�a Þ

þ �
X
a2A
½oteh�aotðs�a � sþa Þca

�
X
a2A
½oteh�aotgaðu;~sþa ;~s

�
a Þ

þ
X

j

jT jjotej �/otðotsÞj þ otðQðsÞÞj
h i

:

ð60Þ

Then, we apply ot in both sides of the semi-discrete scheme
(41) to obtain:

� �

jT jj
X
l2Nj

ðot~sl � ot~sjÞcjl þ
1

jT jj
X
l2Nj

otgjlðu;~sj;~slÞ

¼ �/otðotsÞj þ otðQðsÞÞj:
Then, using the identity ot~sl � ot~sj ¼ otel � otejþ
otðsl � sjÞ, we deduce

ðLhðuÞotehÞj �
1

jT jj
X

l

gjlðu; otej; otelÞ �
�

jT jj
X

l

otðsl � sjÞcjl

þ 1

jT jj
X

l

otgjlðu;~sj;~slÞ ¼ �/otðotsÞj þ otðQðsÞÞj:

Multiplying this last equality by jT jjotej and summing up
over all triangles T j 2Th we obtain

ðLhðuÞoteh; otehÞh
¼
X

j;l

otejgjlðu; otej; otelÞ þ �
X

jl

otejotðsl � sjÞcjl

�
X

jl

otejotgjlðu;~sj;~slÞ

þ
X

j

jT jjotej �/otðotsÞj þ otðQðsÞÞj
h i

:

Finally, applying
P

jlAjl ¼
P

a2A½ATþa þ AT�a � we obtain
(60).

Now, using the first inequality of Lemma 13, we get:

�j
X

a

½oteh�2a 6 t4 þ t5 þ t6; ð61Þ

with

t4 :¼��
X
a2A
½oteh�a½otIhðsÞ�aca; t5 :¼�

X
a2A
½oteh�aotgaðu;~sþa ;~s

�
a Þ;

t6 :¼
X

j

jT jjotej½�/otðotsÞjþ otðQðsÞÞj�:

To obtain bounds for t4, t5 and t6 we follows the main ideas
of Theorem 15. For each h1; h2; h3 > 0, there exist constants
Ci > 0, i ¼ 13; 14; 15; 16, such that

t4 6
�

2
h1

X
a

½oteh�2a þ
� 2

h1

ðC13h2Þ eDðotsÞ
( )

;

t5 6
1

2
h2

X
a

½oteh�2a þ
1

h2

C14h2kf 0k2
L1ðXÞkot~sk2

L1ðXÞ

( )
:

t6 6
1

2
ðh3=C16Þ

X
a

½oteh�2a þ
1

h3

C15h2kotQðsÞ � /ottsk2
1

( )
;

where eDðotsÞ :¼ k
P
jaj62jDaðotsðtÞÞj2kL1ðXÞ. Finally, it is

sufficient to choose h1 ¼ j=2; h2 ¼ �j=2, and h3 ¼
C16�j=2. h

Now we use some results of Ohlberger [8], which estab-
lished the stability of the decoupled and nonlinear semi dis-
crete schemes (see [8, Lemma 5.12 and 5.13]).

Lemma 17. Let ð~u; ~p;~sÞ be the solution of (39)–(41), and let

ðuh; ph; shÞ be the solution of (36)–(38). Then there exist

constants C17;C18;C19 > 0 (with C18 ¼ C18ð�Þ), independent
of h, such that for all t 2 J the following estimates hold:
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k~uðtÞkL1ðXÞ þ k~pðtÞkL1ðXÞ 6 C17; ð62Þ
k~sðtÞkL1ðXÞ 6 C18; ð63Þ

hkuhðtÞkL1ðXÞ 6 C19 hþ kuðtÞ � uhðtÞkL2ðXÞ

� �
: ð64Þ

Theorem 18. Let ðuh; ph; shÞ be the solution of (36)–(38),
ð~u; ~p;~sÞ the solution of (39)–(41) and ðu; p; sÞ the weak solu-

tion of (23)–(25). Then, exists a constant K10 > 0, indepen-

dent of h and �, such that for all s 2 J the following
estimate holds

kðuh � ~uÞðsÞkHðdiv;XÞ þ kðph � ~pÞðsÞkL2ðXÞ

6 K10 1þ k~uðsÞkL1ðXÞ

� �
kðs� shÞðsÞkL2ðXÞ:

Proof. Subtracting (29), (30) from (39), (40) we get

Bðu�h;uhÞ ¼ ðF ðshÞ � F ðsÞ;uhÞ;
Aðsh; u�h; vhÞ þ Bðvh; p�hÞ
¼ ðGðshÞ �GðsÞ; vhÞ þ Aðs; ~u; vhÞ � Aðsh; ~u; vhÞ;

which is a discrete saddle point problem in ðu�h; p�hÞ :¼
ðuh � ~u; ph � ~pÞ. Finally, the theorem follows from [20,
Remark 1.3] and the Lipschitz continuity of F ð�Þ, Gð�Þ
and að�Þ. h

Theorem 19. Let ~s be the solution of (41) and let ðuh; ph; shÞ
be the solution of (36)–(38). Then, exists constants K11 > 0
and K12 > 0, independent of h and �, such that

�j
Z T

0

X
a

½eh�2a þ kehðtÞk2
l2ðXÞ 6 ðTK11h2Þ expð2K12T Þ; ð65Þ

where eh :¼ ~s� sh.

Proof. Subtracting Eq. (35) from Eq. (41), we obtain

ðLhðuhÞehÞj þ
1

jT jj
�
X

l

gjlðu;~sj;~slÞ � gjlðuh; shj; shlÞ � gjlðuh; ej; elÞ
 �

¼ / otðsh � sÞÞj þ ðQðsÞ � QðshÞ
� �

j
:

Multiplying this last equation by jT jjej and summing over
all T j 2Th yields after substraction of ðot~sÞj

ðLhðuhÞeh; ehÞh þ
1

2

d

dt

X
j

jT jje2
j þ

X
a2A
½eh�aGa

¼ /
X

j

jT jjejðotð~s� sÞÞj þ
X

j

jT jjejðQðsÞ � QðshÞÞj;

where Ga :¼ gaðu;~sj;~slÞ � gaðuh; shj; shlÞ � gaðuh; ej; elÞ, with
j 	 Tþa and l 	 T�a . On the other hand by the first inequal-
ity of Lemma 13 we obtain

�j
X

a

½eh�2a þ
1

2

d
dt

X
j

e2
j 6 t7 þ t8 þ t9;
with

t7 :¼
X

a

½eh�aðgaðuh; shj; shlÞ � gaðu;~sj;~slÞÞ;

t8 :¼ /
X

j

T jejðotð~s� sÞÞj

t9 :¼
X

j

T jejðQðsÞ � QðshÞÞj:
To obtain bounds for t7, t8 and t9 we follows the main
ideas of Theorem 15. From Lemma 11 and Theorem 16,
we have that, for each h1; h2; h3 > 0, there exists constants
Ci > 0; i ¼ 20; 21; 22; 23; 24, such that

t76
1

2
h1

X
a

½eh�2aþ
1

h1

C20h2kfk2
L1ðXÞ

( )
;

t86/
X

j

T je2
j

 !1=2 X
j

T jðotð~s� sÞÞ2j

 !1=2

6/
1

2
h2kehk2

l2ðXÞ þh�1
2 kotð~s� sÞk2

L2ðXÞ

n o
6/

1

2
h2kehk2

l2ðXÞ þh�1
2 ½C21h2kotsk2

H2ðXÞ þC22

X
a

otIhðsÞ�ot~s�2a
h i( )

6/
1

2
h2kehk2

l2ðXÞ þh�1
2 C21h2kotsk2

H2ðXÞ þC23h2
h in o

;

t96
1

2
h3kehk2

l2ðXÞ þ
1

h3

C24h2kQk2
L1ðXÞ

� �
:

Therefore, with h1 ¼ �j, we get that there exist K11;K12 > 0
such that

�j
2

X
a

½eh�2a þ
1

2

d

dt
kehðtÞk2

l2ðXÞ 6 K11kehðtÞk2
l2ðXÞ þ K12h2:
After integration with respect to time we get the statement
of the proof by applying the Gronwall’s Lemma and using
ehð0Þ 	 0

�j
2

Z t

0

X
a

½eh�2a þ
1

2
kehðtÞk2

l2ðXÞ 6 T ðK11h2Þ expð2K12T Þ: �
Proof of the Theorem 9. Applying the triangle inequality,
Theorems 14 and 18 we get:
ku� uhkHðdiv;XÞðtÞ þ kp � phkL2ðXÞðtÞ
6 ku� ~ukHðdiv;XÞðtÞ þ k~u� uhkHðdiv;XÞðtÞ þ kp � ~pkL2ðXÞðtÞ
þ k~p � phkL2ðXÞðtÞ

6 C25hþ C26ks� shkL2ðXÞðtÞ:
On the other hand, applying Lemma 11, Theorems 15 and
19, we obtain
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ks� shk2
L2ðXÞðtÞ

6 2 ks� IhðsÞk2
L2ðXÞðtÞ þ kIhðsÞ � shk2

L2ðXÞðtÞ
� �

6 2 C27h2ksk2
H2ðXÞ þ kIhðsÞ � IhðsÞk2

l2ðXÞ

� �n
þ kIhðsÞ � ~sk2

l2ðXÞ þ k~s� shk2
l2ðXÞ

� �o
6 2 C27h2ksk2

H2ðXÞ þ
X

a

IhðsÞ � ~s½ �2a þ k~s� shk2
l2ðXÞ

 !( )
6 2 C27h2ksk2

H2ðXÞ þ C28h2 þ ðTK11h2Þ expð2K12T Þ
 �n o

6 C29h2 þ ð2TK11h2Þ expð2K12T Þ:

Since this holds for all t 2 J , we have proven the L1-esti-
mate in time. Finally, with Gronwall’s Lemma, Theorems
15, and 19, we have

�j
Z

J

X
a2A

IhðsÞðtÞ� shðtÞ½ �2a dt

6 2 �j
Z

J

X
a2A
½~sðtÞ� shðtÞ�2a dt

"
þ �j

Z
J

X
a2A
½IhðsÞðtÞ�~sðtÞ�2a dt

#
6C30h2þð2TK11h2Þexpð2K12T Þ: �
7. Convergence of the full discrete scheme

Lemma 20. Let ðu; p; sÞ be the weak solution of (23)–(25), ~s
the solution of (41) and eS the solution of (45). Define
moreover en

h :¼ eSn � ~sðtnÞ, 0 6 n 6 M . Then, there exist

constants Ci > 0; i ¼ 31; 32; 33, independent of h and �, such

that:
kenþ1
h � en

hkl2ðXÞ

6

ffiffiffi
2
p

Dt
h/

��
X

a

½en
h�

2
a

 !1=2

þC31hkfkL1ðXÞ

24 35
þDt

Z tnþ1

tn

o2s
ot2
ðsÞ

���� ����
L2ðXÞ

dsþC32h 1þkotskL1ðJ ;H2ðXÞÞ

h i( )

þC33

ffiffiffi
2
p

Dt
/
kfkL1ðXÞ:

Proof. Let 0 6 n 6 M . Subtracting Eq. (41) from Eq. (45)
we have

enþ1
j � en

j þ
Dt
/
ðLhðuðtnÞÞeS nÞj � ðLhðuÞ~snÞjðtnÞ
h i

¼ DtðotsÞjðtnÞ � ~sjðtnþ1Þ þ ~sjðtnÞ:

Thus, replacing in this last equation the identity

ðLhðuðtnÞÞeS nÞj � ðLhðuÞ~snÞjðtnÞ ¼ ðLhðuðtnÞÞehÞj þ 1
jT jj
P

Gjl,
where

Gjl :¼ gjlðuðtnÞ; eSn
j ;
eS n

l Þ � gjlðuðtnÞ; en
j ; e

n
l Þ � gjlðuðtnÞ;~sn

j ;~s
n
l Þ;
ð66Þ
we obtain

enþ1
j � en

j ¼ �
Dt
/
ðLhðuðtnÞÞehÞj þ

1

jT jj
X

Gjl

	 

þ DtðotsÞjðtnÞ � ~sjðtnþ1Þ þ ~sjðtnÞ: ð67Þ

Multiplying by ðenþ1
j � en

j ÞjT jj and summing up over j this
yields:

kenþ1
h � en

hk
2
l2ðXÞ

6
Dt
/
jðLhðuðtnÞÞen

h;e
nþ1
h � en

hÞhj

þ
Z tnþ1

tn

Z r

tn

o2s
ot2

;enþ1
h � en

h

� �
dsdr

�����
�����

þ
Z tnþ1

tn
ot~sjðrÞ� otsjðrÞ;enþ1

h � en
h

� �
dr

�����
�����

þDt
/

X
j

jenþ1
j � en

j j
X

l

jGjlj

6
Dt
/

��
X

a

½en
h�

2
a

 !1=2

þC31hkfkL1ðXÞ

24 35 X
a

½enþ1
h � en

h�
2
a

 !1=2

þDt
Z tnþ1

tn

o2s
ot2
ðsÞ

���� ����
L2ðXÞ

dsþkot~s� otskL1ðJ ;L2ðXÞÞ

 !

�kenþ1
h � en

hkl2ðXÞ þ
Dt
/

X
a

½enþ1
h � en

h�
2
a

 !1=2

C33hkfkL1ðXÞ

� �
:

Dividing by kenþ1
h � en

hkl2ðXÞ we get:

kenþ1
h � en

hkl2ðXÞ6

ffiffiffi
2
p

Dt
h/

��
X

a

½en
h�

2
a

 !1=2

þC31hkfkL1ðXÞ

24 35
þDt

Z tnþ1

tn

o2s
ot2
ðsÞ

���� ����
L2ðXÞ

dsþkot~s�otskL1ðJ ;L2ðXÞÞ

 !

þC33

ffiffiffi
2
p Dt

/
kfkL1ðXÞ:

Finally, with Theorem 16 and triangle inequality,

kot~s� otsk2
L1ðJ ;L2ðXÞÞ

6 2 kot~s� otI hðsÞk2
L1ðJ ;L2ðXÞÞ þ kotIhðsÞ � otsk2

L1ðJ ;L2ðXÞÞ

� �
¼ 2 kot~s� otIhðsÞk2

L1ðJ ;l2ðXÞÞ þ kotIhðsÞ � otsk2
L1ðJ ;L2ðXÞÞ

� �
6 C34h2 þ C35h2kotsk2

L1ðJ ;H2ðXÞÞ: �

Theorem 21. Let u, ~s and eS be defined as in (23), (41), and

(45), respectively. If Dt satisfy the CFL condition

Dt

h2
<

/
4

j

�� 2
; ð68Þ

then we have for en
h :¼ eSn � ~sðtnÞ; 0 6 n; N 6 M , there exist

constants K13;K14;K15 > 0, independent of h and �, such

that:
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1

2
keN

h k
2
l2ðXÞ 6 K13T

T

M/2
þ h2

h�

� �
kfk2

L1ðXÞ

þ T
2

T
M
þ h

2

� �
ðE� þ K14hÞ2;

with h :¼ 2/K15=j�; h� :¼ j�=2/; MDt ¼ T and E� :¼R tnþ1

tn k o2s
ot2 ðsÞkL2ðXÞ ds.

Proof. Following the ideas of Lemma 20 and by sub-
traction of Eq. (41) from Eq. (45), multiplying with
en

j jT jj and summing up over j yields with a2 � b2�
ða� bÞ2 ¼ 2ðab� b2Þ, we have

1

2
ðkenþ1

h k
2
l2ðXÞ � ken

hk
2
l2ðXÞÞ þ

Dt
/
ðLhðuðtnÞÞen

h; e
n
hÞh

6
1

2
kenþ1

h � en
hk

2
l2ðXÞ þ DtEken

hkl2ðXÞ �
Dt
/

X
a2A
½eh�aGa;

where Ga is given by Eq. (66) and E :¼R
Dt k o2s

ot2 ðsÞkL2ðXÞ dsþ kot~sj � otskL1ðJ ;L2ðXÞÞ. Applying the
coerciveness of LhðuðtnÞÞ, we obtain

1

2
kenþ1

h k
2
l2ðXÞ � ken

hk
2
l2ðXÞ

� �
þ Dt

/
j�
X

a

½en
h�

2
a 6 t10 þ t11 þ t12;

where

t10 :¼ 1

2
kenþ1

h � en
hk

2
l2ðXÞ;

t11 :¼ DtEken
hkl2ðXÞ;

t12 :¼ �Dt
X
a2A
½eh�aG�a;

with G�a :¼ gaðuðtnÞ; eSn
j ;
eS n

l Þ � gaðuðtnÞ;~sn
j ;~s

n
l Þ. We have from

Lemma 20 that for any h; h� > 0

t10 6 2
Dt
h

� �2
��

/

� �2X
a

½en
h�

2
a þ K13

Dt
/

� �2

kfk2
L1ðXÞ

þ ðDtÞ2

2
ðE� þ K14hÞ2;

t11 6
K15

2

Dt
h

X
a

½en
h�

2
a þ

Dt
2

hðE� þ K14hÞ2

t12 6
Dth�

2

X
a

½en
h�

2
a þ C36

h2

2

Dt
h�
kfk2

L1ðXÞ:

Taking into account that the CFL condition (68), we
obtain

1

2
kenþ1

h k
2
l2ðXÞ � ken

hk
2
l2ðXÞ

� �
6 K13Dt

Dt

/2
þ h2

h�

� �
kfk2

L1ðXÞ þ
Dt
2

Dt þ h
2

� �
E� þ K14hð Þ2;

with h :¼ 2/K15=j� and h� :¼ j�=2/. Finally, summing up
over n from 0 to N � 1 we get the statement of the
theorem. h

Theorem 22. Let ðUh; P h; ShÞ be the solution of (42)–(44),
ð~u; ~p; eSÞ the solution of (39)–(45) and ðu; p; cÞ the weak solu-
tion of (23)–(25). Then, there exists a constant K16 > 0, inde-

pendent of h and �, such that

kUn
h � ~un

hkHðdiv;XÞ þ kP n
h � ~pnkL2ðXÞ

6 K16 k~unkL1ðXÞ þ 1
� �

ksðtnÞ � Sn
hkL2ðXÞ:
Proof. The proof is the same as the proof of Theorem 18 if
ðuh; ph; shÞ is replaced by ðUh; P h; ShÞ. h

Theorem 23. Let Sh be the solution of Eq. (44) and eS the

solution of Eq. (45). If Dt satisfy the CFL condition

Dt

h2
<

/
2

j

�� 2
ð69Þ

then for the error en
h :¼ eS n � Sn

h; 0 6 n, N 6 M , there exists a

constant K17 > 0, independent of h and �, such that

1

2
keN

h k
2
l2ðXÞ 6 K17

T
/

T
M/
þ h2

�j

� �
kfk2

L1ðXÞ þ kQk
2
L1ðXÞ

h i
with MDt ¼ T .

Proof. Subtracting Eq. (44) from Eq. (45), we obtain

enþ1
j � en

j þ
Dt
/
ðLhðUn

hÞen
hÞj

¼ Dt
/

1

jT jj
X

l

Gjl þ
Dt
/
ðQðsÞÞj � ðQðSn

hÞÞj
h i

;

where Gjl :¼ gjlðUn
h;S

n
j ;S

n
l Þ�gjlðuðtnÞ;eS n

j ;
eS n

l ÞþgjlðUn
h;e

n
j ;e

n
l Þ.

Then, using the identity a2�b2�ða�bÞ2¼ 2ðab�b2Þ, mul-
tiplying by en

j jT jj and summing over j, we deduce

1

2
fkenþ1

h k
2
l2ðXÞ � ken

hk
2
l2ðXÞg þ

Dt
/
ðLhðUn

hÞen
h; e

n
hÞh

¼ 1

2
kenþ1

h � en
hk

2
l2ðXÞ þ

Dt
/

X
a

½en
h�aGa

þ Dt
/

X
j

en
j jT jj ðQðsÞÞj � ðQðSn

hÞÞj
h i

:

Applying the coerciveness of Lh (cf. Lemma 11) , we obtain

1

2
kenþ1

h k
2
l2ðXÞ � ken

hk
2
l2ðXÞ

n o
þ Dt

/
�j
X

a

½en
h�

2
a

6
1

2
kenþ1

h � en
hk

2
l2ðXÞ þ

Dt
/

X
a

½en
h�

2
a

 !1=2 X
a

ðG�aÞ
2

 !1=2

þ Dt
/

X
j

en
j jT jj ðQðsÞÞj � ðQðSn

hÞÞj
h i

;

where G�a :¼ gaðUn
h; Sn

j ; S
n
l Þ � gaðuðtnÞ; eS n

j ;
eSn

l Þ. On the other
hand, using the Eq. (67), and applying similar estimates
of the proof of Lemma 20, there exists a constant
C37 > 0 such that
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1

2
kenþ1

h � en
hk

2
l2ðXÞ 6

Dt2�2� 2

/2h2

X
a

½en
h�

2
a

þ C37

Dt
/

� �2

kfk2
L1ðXÞ þ kQk

2
L1ðXÞ

h i
:

Therefore, using the CFL condition (69), there exists a
constant K17 > 0 such that

1

2
kenþ1

h k
2
l2ðXÞ � ken

hk
2
l2ðXÞ

n o
6 K17

Dt
/

Dt
/
þ h2

�j

� �
kfk2

L1ðXÞ þ kQk
2
L1ðXÞ

h i
:

Finally, summing up over n from 0 to N � 1 we get the
statement of the theorem. h

Proof of the Theorem 10. The proof of this result is similar
to that of Theorem 9. The triangle inequality, Theorems 14
and 22 yield for all tn 2 J h
Table 1
Numerical values for physical parameters

Symbol Value Unit

Absolute permeability k 1:78� 10�11 [m2]
Liquid density qw 1011 [kg/m3]
Gas density qn 1.16 [kg/m3]
Porosity / 0.33 [–]
Liquid viscosity lw 10�3 [kg/m s]
Gas viscosity ln 1:85� 10�5 [kg/m s]
Residual water saturation swr 0 [–]
Initial water saturation so

w 0.4343 [–]
VG-parameter n 1.411 [–]
VG-parameter a 1:35� 10�4 [1/Pa]
Heap slope h p=4 rad.
Heap width W 25 [m]
Heap height H 5 [m]
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x 104
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Fig. 2. Capillary pressure pc and relati
kuðtnÞ �Un
hkHðdiv;XÞ þ kpðtnÞ � P n

hkL2ðXÞ

6 kuðtnÞ � ~unkHðdiv;XÞ þ k~un �Un
hkHðdiv;XÞ

þ kpðtnÞ � ~pnkL2ðXÞ þ k~pn � P n
hkL2ðXÞ

6 eK 1hþ eK 2ksðtnÞ � Sn
hkL2ðXÞ:

We get by the triangle inequality

ksðtnÞ � Sn
hkL2ðXÞ 6 ksðtnÞ � IhðsÞðtnÞkL2ðXÞ þ kIhðsÞðtnÞ

� eS nkL2ðXÞ þ keS n � Sn
hkL2ðXÞ:

The three terms of the right hand side of this inequality can
be estimate by Lemma 11, Theorems 15, 21, and 23, as
follow: there exist constants K3;K4;K5 > 0, such that,

ksðtnÞ � IhðsÞðtnÞk2
L2ðXÞ 6 K3h2

kIhðsÞðtnÞ � eS nk2
L2ðXÞ

6 2 kIhðsÞðtnÞ � ~sðtnÞk2
L2ðXÞ þ k~sðtnÞ � eS nk2

L2ðXÞ

� �
6 2

X
a
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T
/
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2
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h i
:

This completes the proof. h
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Fig. 3. Evolution of sw in two points of X.
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8. Numerical results

We show the behavior of our numerical scheme for the
same numerical examples considered by Cariaga et al.
[21,23]. The numerical solution of system (1)–(6) require
an explicit definition for pcð�Þ and krað�Þ; a ¼ w; n. In our
simulations we prefer the Van Genuchten (VG) model
(see [13]), where

pcðswÞ ¼
1

a
ðS�1=m

e � 1Þ1=n
;

krwðswÞ ¼ Se
eð1� ð1� S1=m

e Þ
mÞ2;

krnðswÞ ¼ ð1� SeÞcð1� S1=m
e Þ

2m
;

with SeðswÞ :¼ sw�swr

1�swr
the effective saturation and swr the

residual water saturation [13]. The terms e and c are form
parameters which describe the connectivity of the pores.
Generally, e ¼ 1

2
and c ¼ 1

3
. For an analysis of (VG)

parameters, in the heap leaching context (see [21]). In
Table 1 we show our choice of parameters in the heap
leaching context. Our choice is similar to that of Li
[22]. On the other hand, our computational code consider
an implicit scheme for the MFE method to obtain an
approximation of pðx; tnþ1Þ and uðx; tnþ1Þ, where the
liquid saturation sw is replaced by an approximation of
swðx; tnÞ, while that the saturation equation is solved by a
cell centered FV implicit scheme to obtain an approxi-
mation of swðx; tnþ1Þ, where the total velocity u is replaced
by an approximation of uðx; tnþ1Þ, [23,24]. We use a
damped inexact Newton algorithm for solving the non-
linear system of equations, [25,13]. The capillary
pressure, pc and the relative permeability, kra used are
plotted in Fig. 2. A plot of the evolution of sw in two
points P1 ¼ ð13:57; 5:00Þ and P2 ¼ ð13:17; 2:95Þ in the
heap X is given in Fig. 3, for an irrigation ratio
R ¼ 5:34½lt=hr=m2�.
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