ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 196 (2007) 2541-2554

Computer methods
in applied
mechanics and
engineering

www.elsevier.com/locate/cma

Convergence of a MFE-FV method for two phase flow
with applications to heap leaching of copper ores

E. Cariaga *°, F. Concha !, M. Sepilveda **

& Department of Mathematical Engineering, University of Concepcion, Casilla 160-C, Concepcion, Chile
° Department of Mathematical and Physical Sciences, Catholic University of Temuco, Casilla 15-D, Temuco, Chile
¢ Department of Metallurgical Engineering, University of Concepcion, Casilla 53-C, Concepcion, Chile

Received 26 January 2006; received in revised form 9 August 2006; accepted 8 November 2006

Abstract

In this paper we describe error estimates for a finite element approximation to partial differential systems describing two-phase immis-
cible flows in porous media, with applications to heap leaching of copper ores. These approximations are based on mixed finite element
(MFE) methods for the pressure and velocity and finite volume (FV) for the saturation. The fluids are considered incompressible.

Numerical results for heap leaching simulation are presented.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We can use the knowledge, experience and physical intu-
ition accumulated in the hydrological sciences and petro-
leum engineering to simulate, optimize and improve heap
leaching operations today. Leaching is a mass transfer pro-
cess between the leaching solution (fluid phase) and the ore
bed (solid phase) [1,2]. The heap leaching process can be
considered as a multiphase flow phenomenon in a porous
medium, where the fluid phase is composed by a liquid
(leach solution) and a gas [3,4]. Two distinct phenomena
are of interest in the study of heap leaching: the fluid flow
and the physicochemical reactions [5]. These two phenom-
ena can be studied separately if the extent of leaching does
not influence the flow pattern. In other words, the flow pat-
tern in a heap depends on the initial conditions of the heap
only. In general, researchers in heap leaching have sepa-
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rated the fluid flow problem from the physicochemical
problem.

In this paper, we study the convergence of a numerical
scheme for the fluid flow model. We use the classical
two-phase flow equations, which can be rewritten in differ-
ential formulations so that the coupling and nonlinearity
are weakened. These formulations include, phase, global,
and weighted formulations. We consider the global formu-
lation, specifically, the fractional flow formulation for two-
phase immiscible and incompressible fluids.

It is well known that advective transport in diffusive
effects dominates for two-phase flow equations in porous
media. Hence, it is important to obtain accurate approxi-
mate fluid velocities. This motivates the use of mixed finite
element methods for the computation of pressure and
velocity, due to the convection—diffusion control of the sat-
uration equation, efficient and accurate approximations
should be used to solve this equation. On the other hand,
finite volume methods should be considered for the compu-
tation of the leaching equation, resolving shock fronts in a
proper manner.

MFE-FV schemes for two phase flow models were
first proposed by Durlofsky [6] (see also [7]) without a
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convergence analysis. A results of convergence for a partic-
ular case of two phase flow system, with linear flux,
non-degeneracity of the diffusion terms, and without grav-
itational effects, were proved by Ohlberger [8]. A fully dis-
crete finite element analysis of multiphase flow in
groundwater hydrology was given by Chen and Ewing [9]
for smooth solutions of for fractional flow formulation,
with a constant liquid density and a gaseous density
depending on the global pressure. An error estimates for
finite approximations of the system, which are based on
MFE methods for pressure and velocity and characteristic
finite element methods for saturation was proved by Chen
[10]. A procedure which consisted in a MFE method for
pressure equation and an upwind scheme was considered
by Chavent and Jaffré [11]. It is based on a discontinuous
finite element approximation associated with a slope limiter
for the saturation equation. In degenerate cases, i.e., when
the diffusion term becomes zero for some saturation values,
Chen and Ewing [12] considered a finite element approxi-
mation where the elliptic equation for the pressure and
velocity is approximated by a mixed finite element method,
while the degenerate parabolic equation for the saturation
is approximated by a Galerkin finite element method.

A more detailed and extensive review of different numer-
ical methods for classical two phase equations, for immis-
cible and incompressible flow, can be found in the paper
of Chavent and Jaffré [11], in the reservoir simulation con-
text, and in the paper of Helmig [13], in the environmental
engineering context.

The aim of this paper is to study convergence for the
two phase flow system with applications to heap leaching
of copper ores. This is done by proving an a priori error
estimate. Our proof follows the main ideas of Ohlberger
[8]. But, additionally, our model consider a nonlinear con-
vective term and a nonlinear gravitational term both of
which are very important in heap leaching, because the
flow is mainly vertical. In contrast to [8], our problem con-
sider non-homogeneous Neumann boundary conditions,
which corresponds to the physical behavior of the irriga-
tion and infiltration processes in Heap Leaching. Finally,
we obtain numerical results, with experimental parameters
from the copper industry in Chile.

The paper is organized as follows. In Section 2, we state
the continuous problem. In Section 3 we state the discrete
problem. In Section 4 we present the main convergence
results. In Section 5 we develop some preliminary results,
which will be useful in the convergence analysis. In Section
6 we proof the convergence of the semi discrete scheme. In
Section 7 we proof the convergence of the fully discrete
scheme. Finally, in Section 8 we present results of the
numerical experiments.

2. Statement of the continuous problem
In this section we present the classical two phase immis-

cible and incompressible flow equations for the fluid flow
problem in the context of Heap Leaching. Next, we define

a fractional flow formulation for the degenerate and non-
degenerate case in a weak form. Finally, we define a model
problem for our convergence analysis.

2.1. Physical problem

In this paper we consider two dimensional geometry,
i.e., a transversal cut of the heap (Fig. 1). The boundary
0Q of the domain Q C R* is expressed as 0Q =1I"U
Ir°urture, where I'' is the input boundary (zone of irriga-
tion), I is the output boundary (zone of drainage), I' is
the left boundary and I'" is the right boundary. In particu-
lar, in the context of heap leaching, we can assume that the
porosity ¢, and the densities p,, and p, are constants, that
there are no source terms ¢q,, = g, = 0, and that K = &/ rep-
resents the intrinsic permeability tensor as a characteristic
property of the porous matrix only. Therefore, the physical
problem for the fluid flow in heap leaching process is given
by the following system (see [14] and [13]):

Os
Bu 4 gy, = 1
¢ 5 +V - vy =0, (1)
Osyy
S vy =0, 2
10) 5 +V-v (2)
ki
Vw = _k_(va - pwg)7 (3)
km
Vn = 7k'u_(vpn - png)7 (4)
pc(sw) = Pn — Pw> (5)
Sw+sp =1 (6)

for all x € Q, and ¢ > 0, where s, is the saturation, with
o = w denoting the leaching solution and « = n denoting
the gaseous phase, v, is the volumetric velocity, p, is the vis-
cosity, k; 1is the relative permeability, g= (0,—g),
g =19.8m/s?], is the gravitational, downward-pointing,
constant vector, and p. is the capillary pressure. Addition-
ally, we assume the following initial conditions:

SW(Xvo) = sfv» pn(X7 0) = P4

FO

w

Fig. 1. Mathematical domain (transversal cut of the heap).
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for all x € Q, where p, is the pressure, ¢, is the initial sat-
uration, pa is the atmospheric pressure, and we assume
the boundary conditions
(Vy -m)(x,) = —R, x€eTI’,
vy m)(x,0) =0, xeI"uTl
Vp, -m)(x,1) =0, xel”,
Vs, -m)(x,0) =0, xel"ur'ur,
‘n)(x,t) =0, xeI”

for all # > 0, and where R = R(¢) > 0 is the irrigation ratio.
In what follows we will omit w in s,,.

(
(
(
(¥

2.2. Fractional flow formulation

Egs. (1)-(6) can be rewritten in a different differential
formulations so that the coupling and nonlinearity are
weakened. This paper follows the fractional flow formula-
tion [11], i.e., a formulation in terms of a saturation and a
global pressure. The main reason for this fractional flow
approach is that efficient numerical methods can be devised
to take advantage of the many physical properties inherent
in to flow equations [9]. Now we introduce the total mobil-
ity A(s) := Ay + 4y, Where 2,(s) := k,,/u, are the phase
mobilities for o =w,n, f,(s):= 1,/4 the fractional flow
functions, and the total velocity given by u:= vy + v,.
Note that adding (1) and (2), and using (6), we obtain
V -u = 0. Additionally, following [11], we define the global
pressure

- / () (x, 82, )

noting that Vp = Vp, — £, Vp,.

2.2.1. Weakly degenerate formulation
Summing (3) and (4), and using the gradient computa-
tion of (7), we obtain the total velocity

u=yvy+Vv,= _k/l(vp - Gig)v (8)

where G; := (Aypy, + 4np,)/2 On the other hand, manipu-

lating Eqs. (3) and (4), we obtain A,vy — AyVy =

Inw(VD, + (pw — p,)g), and using (8), we deduce

Vo = fu(s)u — Dy (s)Vs — Gy(s)g, 9)
= fu(s)u — Dy(s)Vsn + Ga(s)g, (10)

where

Therefore, collecting (8)—(10) we define an alternative for-
mulation for the system (1)-(6) which is called Fractional
Flow Formulation

V-u=0, (11)
u=—kA(Vp—Gg), (12)
0
a—j: ~V - (fyu— DyVs — Gyg) (13)
for all x € Q and ¢ > 0, with the initial conditions
s(x,0) =5y, p(x,0) =p, (14)
for all x € Q, and the boundary conditions
(w-n)(x,7) = @ (s(x,7)), (vw-m)(X,1) = @y(s(x,2)) (15)

for all x € I" and ¢ > 0, where the functions ¢, and ¢, are
know from previous expressions. Note that the Eq. (13) is
parabolic and weakly degenerate, because Dy, (sy,) = 0 and
Dy (1) =0, where sy, is the residual saturation for the li-
quid phase.

2.2.2. Non-degenerate formulation

Rather than a saturation, a complementary pressure was
introduced by Chen [15]. In this form, the system formally
appears to be non-degenerate. In effect, the complementary
pressure, i.e., the Kirchhoff transformation, is defined as

0= (nfarl) (%, &) dE, (16)

where s is related to 6 through s = & (6), where ¥(x, ) is
the inverse of (16) for 0<0< 0" with 0" (x):=
— fol Infwpl(x, &) dE. From this definition we obtain alterna-
tives expressions for u, vy, and v,, given by

u=—k(A(s)Vp+7(s)),
Vo = —k(VO + 24 (s)Vp + 75(s))
Vo = k(Y0 — Au(s)Vp + 74(5)),

= fu(s)u—kVO —ky,(s),

where the definition of y}, i = 1,2,3 and y, can be found in
[15]and [12]. Therefore, we obtain an non-degenerate alter-
native formulation for the system Egs. (1)—(6) given by

V-u=0, (17)
w=—k(iVp+7)), (18)
%: —V - (fals)u — kY0 — kpy(s), (19)

in the unknowns u, p, and 6, with the initial and boundary
conditions similar to (14) and (15). The differential system
has a clear structure; the pressure equation is elliptic for p
and the saturation equation is parabolic for 0 (degenerate
for s). Its mathematical properties such as existence,
uniqueness, regularity and asymptotic behavior of solution
have been studied by Chen [15,16].

2.3. Weak formulation

Define the spaces as

V(g) :={ve H(div;Q)|v-n = g,0Q},

/Qv(x,t)dx = 0},

W= {u € L*(Q)
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and M :=H' (Q) Deﬁne the bilinear forms 4 and B as

A(&v,w) = [a(E)v-w and B(v,¢) :=— [,V -v. Intro-
duc1ng the weak form of the system (17)—(19): find
ucL®J;V(py)), peL*J; W), and 0¢€ L*(J;M) such

that s = %(0), ¢, € L*(J;M'), 0 < 0(x,1) < O0°(x) ae
on Qr,
B(u,v) =0, (20)

A(s;u,v) + B(v, p) = (11(5), ), (1)

[asoas [nvod=- [ (o),

for all v e L*(J; W), for all ve L*(J; V( )), for all ve
L}0,5;M), t€J, where a(s):= (kA(s))”' and p,(s):=
1 (5)/(s).

Under physically reasonable assumptions on the data
and the assumption that @ is a multiply-connected domain
with Lipschitz boundary I, the system (17)—(19) has a weak
solution in the weak sense of (20)—(22). Under additional
assumptions on the data, it was shown by Chen [15] and
[16], that s is Holder continuous on Q7 and the weak solu-
tion is unique.

v)pdt (22)

2.4. Model problem for convergence analysis

In Heap Leaching it is physically reasonable to assume
that a residual saturation 0 < s, < 1, an initial saturation
0 < ¢, <1 and a saturation of stability 0 < s{, < 1 of the
leaching solution exist, such that the capillary diffusion
coefficient Dy, in (13), satisfies

0 < Dy(swr) < Dy(s%) < Dy(s) < Dy(sg) < 1,

where 0 < sy, < 9, < s, < 1. For our convergence analysis
we consider the system (11)—(13), under the assumptions
that it is not degenerate. In order to simplify our conver-
gence analysis we replace the nonlinear function D,, in
(13) by the constant € > 0 defined as

1

= — Dy, (s(x
(2T o, P

,1))dxde,

where J := (0, T'). Additionally, we consider vectorial func-
tions d and e such that d(s(x,?)) -n= ¢, (s(x,#)), and
e(s(x,1)) -n= @,(s(x,1)), with x € 0Q, and define the new
unknowns w and u,, as

w+d(s(x,7)) = u,
u, +e(s(x,1) = vy

with x € Q, >0, then, the homogeneous Neumann
boundary condition holds for w and u,,. Now, we introduce
these simplifications in the system (11)—(15) to obtain our
Model Problem for the convergence analysis, maintaining
the notation u for the total velocity.

Definition 1. Let Q@ C R?> be a convex polygonal bounded
domain, J := (0,7) a time interval and Q7 :=Q xJ. A
mapping (u,p,s): Qr — Rx R x R* is called a Strong
Solution of the model problem if for all (x,¢) € Qy:

V-u=—F(s), (23)
u=—kA(Vp— G(s)), (24)

qbg + V- (f(s) — eVs) = O(s), (25)
where f(s) := fi,(s)u— Gy (s)g —e(s), F(s) =V -d(s),lQ(s) =
=V [fu(s)d(s)+e(s)] and G(s):=G,(s)g— (kA)" (s)d(s).
The initial conditions are given by

s(x,0) =s°, p(x,0)=p, (26)
for all x € Q and the boundary conditions are given by
u-n=0, (f(s)—€eVs)-n=0 (27)

forall x e I'and ¢ > 0.

3. Statement of the discrete problem
3.1. Notation and assumptions

We follow a classical notation for unstructured grid for
VF and MFE-VF methods used previously in [8,17,18]. Let
T, :={T;|is a triangle, i € I C N} be a unstructured trian-
gulation with fineness / of a bounded domain Q C R*. We
assume that the following properties are satisfied:

() @ =Urer,T

(2) For T; # T; € 7, one and only one of the following
properties hold: 7;(\7; =0 or T;(\T; = common
node of T;,T; or T;(\T; = common edge of 7;,T,.

(3) h:=supsc,, diam(T) < oc.

(4) For any angle 6 of a triangle of .7 ,, one has:
0<0<m/2.

(5) There exists a; >0, ap >0 and A >0 such that
VT € 7, and for any edge a of the mesh, B4 <
|T| < Byh?, and onh < [(a) < ozh.

Additionally, we shall use the following notation for the
unstructured triangulation:

|T,|: area of T

x;: midpoint of the ambit of T},

N;: set of neighbour triangles of T;

S;;: joint edge of T; and T,

n;: outward unit normal to T; in direction 7, j € N,
of: set of all edges of 7

l(a): length of edge a,

d(x;,S;;): distance from x; to the edge S;.

If (-, ¢) is a piecewise continuous function on 7, and p,
u, s is a solution of the model problem, we define in addi-
tion for (x,?) € Qy:

fr (x,1)dx.
(t) a constant approximation of s(-,¢) on T; € 7.
na(t): unit normal to edge a € o/ at time ¢, such that
[, u(x,2) -n,(t)de = 0.
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T7: the neighbour triangle of a, such that n, is the outer
(inner) normal of 7.

st(#): the upstream choice of s(-,

d, =d(x,a) +d(x;,a).

v, = 1(a)/d,, 1€ := mingeyy,, and T := maX,cy7,.

For any variable 7, some times we use n; = ny: and

n, = nr- in order to lighten the notation.

a

t) on the edge a € </.

Furthermore, we shall use the following notation for the
time discretization:

Jy = {" € J|" = nAt, with n € {0,... , M},
such that MAr =T}

S1(x) = f(x, 1),

For given discrete data s7 let the global function s,(-,,) be

defined as s7 := s, (X, t”)\T for all T; € 7, and the global
function s € LZ(Q) we define the interpolation /,(s) as:

In(s(-, )|z, = s(x;,t) forall T, € 7

The corresponding finite dimensional subspace of L*(Q) is
defined as:

zﬂgy:{veﬁanwrzcmmtVTejy}
Zreﬁ TS

be the jump of s, over an

for any function f(x,1).

with the norm ||Sh||?
Finally, let [Sh] S
edge a € .

Remark 2. If (u, p, s) is a sufficiently smooth solution of the
model problem, then we have, for all 7, € 77,

$(0ss); + (L(w)s); = (Q(s)), (28)
where L(u)s := V - (f(s) — €Vs).

3.2. The mixed finite element part

Let V, and W), finite dimensional subspaces of
V :=V(0) and W, defined as

W, = {Wh € W|Wh|T = const, VT € 9‘11}
and V,, is a lowest order Raviart-Thomas space.

Definition 3. For fixed 7 € J let s;(x,¢) be given. Then the
mixed finite element scheme for the Egs. (23) and (24) is
defined as: find (w,p,) € Vi, x W, such that, for all
(Vi, 01) € Vi X Wyt

(F(sn), 4), (29)
(G(sn), va)- (30)

B(uth)h) =
A(sp;up, Vi) + B(Vi, py) =

3.3. The finite volume part

We consider a cell centered finite volume scheme for the
Eq. (25) with the IBC (27), in the unknown s, i.e., the level
of saturation of leaching’s solution. For an arbitrary trian-
gleT, €7

=0(s),

<i>6ts+V~( (s) —€Vs)
O /atsdx—k T/V-(f(s)—eVs)dx:Fj T/Q(s)dx

s ./aﬁdx+—aww£((Q—fVﬂdﬂd:%;A}X@dx

From this last equality, we can define the discrete relation
(see [19])

tsh E F/[ -

/ leN;

Where Fj](ll, Sh) = gjl(u; shjashl) — G’le(Shl — Shj), if Sj] N
0Q =0, F;(u,s;) := 0, otherwise, and g;(-) is a Engquist—
Osher numerical flux given by

10l [7,

21 (W; 8, 51) = + @],

& = 0,(0) + / max{®,,(¢),0} d¢, (31)

j,—/ min{®’,(

with @;(s) :==1(s) -n. It is well know that the Engquist—
Osher numerical flux g, (-) defined in (31), satisfies [19]:
for all » > 0, there exists a constant C = C(r) > 0 such that
for all u,v,u',v" € B.(0)

£),0}dé

185 (5u,0) — g5, (5, 0)| < Ch(ju —u'| + o =2]),  (32)
gjl(';u7v) = _glj(';v7u)7 (33)

g (s uu) = [Sulf(u) - my. (34)
Note that the inequality (32) is a local Lipschitz condition,
the identity (33) is the conservation property and the iden-
tity (34) is consistency. Finally, the semi discrete finite vol-
ume scheme is defined as

Definition 4. Let  (wy(x,?),p,(x,?)) € Vy x W, for
(x,7) € Qr. Then s,(x,?) is defined by the semi discrete
finite volume scheme as

d)(atsh)j + (Lh(uh)sh)j = (Q(Sh))jaVTj €I, (35)
where  (Ly(V)¢), := 7 3 ey Fiu(h,6)  and  s(-,0)ly, =
(s°(1));- Addltlonally, the discrete inner product is defined

as (Ly(¥)¢.9), - =215, (La(¥)c);.

3.4. The combined schemes

3.4.1. The semi discrete scheme

Let (u,p,s) be a weak solution of (23)—(25). We define
the semi discrete combined and decoupled MFE-FE
scheme for the model problem as follows:

Definition 5 (Coupled). Find (uy, p;,si) :J — Vi X W%
*(Q) with:
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(1) (uw,p,) is a solution of the MFE scheme, i.e., for all
(Vi 1) € Vi X W

B(wy, ) = (F(sn), @4), (36)

A(sp; wp, Vi) + B(Vi, o) = (G(s1), V). (37)
(2) s;, 1s a solution of the semi discrete FV scheme:

(i), + (Li(wn)si); = (O(si)); (38)
(°()),.

Definition 6 (Decoupled). Given ¢ € J, find (u(z), p(¢),5(t))
such that:

with 5,(-,0),, =

(1) (a(z),p(t)) € V, x W, is a solution of:

B(u(r), @) = (F(s), @), Vo, € W, (39)
A(s(2);a(t),vi) + B(vi, p(8)) = (G(s),v4), Vv, €V,
(40)
(2) 3(-,¢) solves:
d)(ats)j + (Lh<u)§)j = (Q(S))_p (41)

with 5(-,0)[; = (s°(-)),, forall T, € .7,
3.4.2. The full discrete scheme

Let (u,p,s) be a weak solution of (23)—(25). We define
the full discrete combined and decoupled MFE-FE scheme
for the model problem as follows.

Definition 7 (Coupled). Find (U, Py, Sy) : Jy — Vi X WX
(Q) with:
(1) Initial values: S;) = (s);,
(2) For n =0 to M do:
(a) For given S;,(+, ") let (Uy(+, "), Py(-, 1)) € Vyx W,
be defined as the solution of the MFE scheme,
such that, for all (v,, p,) € V, x W:

B(Uy, ¢,) = (F(Sh), 1) (42)
A(Sy; Up, Vi) + B(vi, Py) = (G(S4), Va). (43)

(b) For given (U,(-, "), Py(-,¢")) calculate S, (-, ")
with the full discrete FV scheme, defined as:

1
Si =Sk

P4, Lt (Ly(Uy)Sh); =

forall T; € 7.

forall T, € 7,

(O(Sh)), (44)

Definition 8 (Decoupled). Find (i, p, S) such that:

1. For each ¢ € J;,: (u(¢"), p(¢")) € V, x W, is a solution
of (39) and (40). B

2. §(-,2"*") satisfies the initial condition §9 =
T;€ 7, and for n =0 to M:

(s%), for all
S-S 5 )
67 (L)), = (0)), (45)

where 5;?“ = §(t”“)|T/ forall T, € 7,

4. Main results
4.1. Convergence of the semi discrete scheme

Theorem 9. Let (u,p,s) be a weak solution of (23)—(25) and
(wp, py, sn) a solution of (36)—(38). Then, there exist constants
K1,K, > 0, depending on some higher order Sobolev norms
of (w,p,s), but independent of h and €, such that:

2 2 2
[Ju—up | vyt lp _Ph”pc syt lls = snllz~ (i2(Q))

+6K/Z[h 7Sh ]dl

acd

h2K1 (1 —+ exp(Kz ))

This theorem is proved at the end of Section 6, after some
previous results.

4.2. Convergence of the full discrete scheme

Theorem 10. Let (u,p,s) be weak solution of (23)—(25) and
(Up, Py, Sy) solution of (42)—(44). If At satisfies the CFL
condition

At

- g -
n ¢46T2
then there exists a constant K; > 0, i = 3,4,5,6, depending

on some higher order Sobolev norms of the exact solution,
but independent of h and € such that:

n n| 2 n (|2 n n |2
lla(#") = Uslly + (") = Pyl + lls(#") = Sill 2 o)

s T K T/ T K
<K3h2+1<4{ @+T(M¢2+—¢) +$(M¢+ )
n\* n»r?
+ () 106)- $01E- g+ o700

T
I (M f)({@ +K5h2>}+K6|Q|§X(.Q)

with MAt =T

(46)

2
1]z )

This theorem is proved at the end of Section 7, after
some previous results.

5. Preliminary results

We have the following estimates from the geometric
properties of an unstructured grid [8,17,18]:

Lemma 11. Let J, be a unstructured triangulation, T,
T/ €T X,y T;UT), ¢, € *Q), oc[*J;H(Q)),

n e HZ(Q). Then there exist constants Cp,C,, C3 > 0,
independent of h, such that:
lo(x) — oy)| < Cillollzir,), (47)
. 2
C2H5||?2(Q) < Z[bﬁ <3 ||5H?2(Q)? (48)
aco/ h
HC_5||L2(Q) = H§_5||12<9)a (49)
ln — 5”@(9) < C3h2||'1||i12(9> + [1n(n) — 5”?2@2)' (50)
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On the other hand, we have the following estimates for
the numerical flux:

Lemma 12. Let y € V be a given vector. Then there exists
constants Cyq,Cs > 0, independent of h and €, such that:

1/2
Zgi(lﬁ;;?,@a)} < Cah|[f]l 1~ (q) (51)

aco/

12
Z(@&(W%QL%))Z] < Cshllf || ooy 106l g0y (52)

aco/

Proof. By definition is enough to see that
g1y, ¢,) < |Sall @p(max{c,, ¢, })l
= u2h|f(max{ga ’ ga })l

and then we obtain (51). On the other hand, by definition
and the application of the Leibnitz’s rule, we have

0.8, (Yin,7) = 1Sal[0, P, (n) + 0, P, ()]

1)
—|S,| [at max{® (8),0} do
0

(1)
1o, / min{@;(é),O}dé}
0
< [Sq| max{[0,n], [0,7]} sup | P, ()].
<

and then we obtain (52). [

Finally, from (35) and the Holder’s inequality we obtain
the following estimates for the operator L;:

Lemma 13. For the discrete inner product (Ly(Y)s,¢c), we
have

(1) Coerciveness:
(Li(W)s,9)y = e Y [ela+ > leluga(bicy cp)-
acs/ acso/

(2) Boundedness:

1/2 1/2
(Li(¥)s,8), < [eT(Z[sli) + (Zgi(%;ﬁ;,)) ]

aco/

1/2
< (x2) -

acd

6. Convergence of the semi discrete scheme

Theorem 14. Let (u,p,c) be the weak solution of (23)—(25).
If p(z) € H'(Q), u(z) € (H'(Q))* and divu(z) € H'(Q) for
any fixed time © € J, then the scheme (39), (40) has a unique
solution (u(t),p(t)) € Vy X W), and there exists a constant
K7 > 0, independent of h and s(z), such that:

1w =) (D)l 11aiv) + (2 = D) (Dl 20
< K7h(‘P(7)|H'(g) + |“(T)|(H1(Q)>2 + |diV“(T)|H1(gz))~ (53)

Proof. Clearly, the bilinear form A(s;-,-) is coercive and
B(-,-) satisfies the inf-sup condition. Then, using [20, The-
orem 1.1] we have that the scheme (39), (40) has a unique
solution (u(t),p(t)) € V, x W, and there exists a constant
Cs > 0 such that

[ (@ =) () |y givse) + 12— P) ()] 1200

< Col inf () = Villyaa + 108 P(5) = il
Now, using standard approximation properties to estimate
the right hand side expression of this last inequality (see
[12]), we obtain (53). O

Theorem 15. Let 5 be the solution of (41) and (u,p,s) the
weak solution of (23)—(25). Let e, be defined as
e, :=5—1,(s). Then, for all t € J there exists a constant
Kg > 0, independent of h and €, such that the following esti-
mate holds:

€K

7 2lal < K {1012 )+ 106) = 0l g

12 (5) [} ) } (1), (54)

: 22
where 9(s) := 3 o< |D’sl".

Proof. for ¢, :=5— Ih(s) we have
(Ly(u)en, ey h=—€z Va+zeh
+ Z Tjej - ¢(als)j]7 (55)
J

where G, := g, (u; e, e) —g,(u;5;,5,). Using the coercive-
ness property of L, from Lemma 13, we can estimate

€K Z [eh]i <
with

t = —¢ Z[eh]a[lh(s)]aya, L= _Z[eh]aga(u;§j7§l)’
t3 := Z T,e;[(0(s)), —

About ¢, using the Hoélder and Young inequalities,
we obtain for each 0; >0 that # <5{0:)_[e el +
(/00 [i(s )] }, but by (47) and (48), there exist con-
stants C7, Cg > 0 such that

1h(); = Is(x o) = s(x, . 1) <

=Cr > |ID%s(-

t+tr + t3, (56)

¢(ats)j]-

2
CrllsCs Do,

||L2 TruT,)
0<|o|<2
< Cgh? sup |2%(s(x, 1)),
TIUT,

where Z7(s(x,1)) 1= o ya| D?s(x, 1),
exists C9 > 0 such that

Therefore, there
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€ 7’
< 3 {91 Z[eh]i + 9—1C9h2||9(5)|i0<(9)}- (57)

About t,, using the Holder and Young inequalities and
Lemma 12, we obtain for each 0, > 0, that there exists a
constant Cyo > 0, such that

1 , 1 2
t <§{02 za:[eh]a+9—zcloh2|f|mm}' (58)
About 3, using Holder and Young inequalities and the

inequality (48), we obtain for each 0; > 0, that there exist
constants Cy;, Cj» > 0 such that
N2
~ $(2),)

12
"< <Z r,ej) (2 T, [(0w)
J J
1 1
<30t + g (0l06) - g0t

1 1 2 2
<3 (93/C12)§a:[ enls + % (C“h 10(s) — ¢azS||Lx(g))]~

(59)
(ex/3)C)a, and

Finally, with 0, = x/3, 0, = ex/3 and 0; =
replacing (56)—(59) in (55), we get (54). O

Theorem 16. Let § be the solution of (41) and (u,p,s)
the weak solution of (23)—(25). Let e, be defined as
e, := 5 — I;)(s). Then there exists a constant Ky > 0, indepen-
dent of h and ¢, such that the following estimate holds, for all
ted

€K 2Koh? ~ , ~

vy [atehﬁ < % (6T292(at5) + [If ||ix<g) + ||6,s||§x(9)
+1000) ~ sl )

where &(,s) := || 3, | D* (st ))Izlllo«@

Proof. First we will prove the following identity:

(Lh (u)ateha ateh)h = Z[ateh]aga (ll; ate;; ate;)

aco/

“I‘GZ teh

aco/

- Z[ateh]aatga u; Sa 7sa )

+ 31T o, [~ 40,(015), + 2,(0(5)), .
| (60)

Then, we apply 0, in both sides of the semi-discrete scheme
(41) to obtain:

(8, =547

Z 81— 008;) 7 + Z@,gﬂ w;5;,5,)
| /| IeN; ‘T| [eN;
= _d)at(ats)j + at(Q(S))j'

Then, wusing the
0,(s; — s7), we deduce

(L (u)0es) _T Zgﬂ 0re;, 0,e1) |T | Za )7
T |Zatg,l 05,51) = —$3,(3s), + A,(Q(5)),

identity 0,5, — 0,5, = O,e; — O,e; +

Multiplying this last equality by |7;|0,e; and summing up
over all triangles 7, € 9, we obtain

(Lh ( )areha ateh)h

= Zé,ejgﬂ 0,e;,0,e/) —4—626,6
= D00 (5, 51)

Jjl

+ 3 T [0 [~¢0(@s), +2,(00s)), .

(81— /j,

Finally, applying 3,4 =>_,,[Ar: +Ar;] we obtain
(60).

Now, using the first inequality of Lemma 13, we get:

GKZ ,e;, t4+t5+t67 (61)

with

ly:= _Ez[afeh]a[allh(s)}aya7 Isi=— Z[ateh]aatga(u“ga 7Sa )’
ac./ acod

o= Z |T,10re; [~ 0:(35), +3,(0(s)), -

To obtain bounds for 74, t5 and t¢ we follows the main ideas
of Theorem 15. For each 60, 0,, 0; > 0, there exist constants
C;>0,i=13,14,15,16, such that

<3 {01 > el

a

1 , .
{02 Z[azehlﬁ + 0_2 C14h2||f ||ixm) ||arSHioc(g) }

a

7’ ~
+ ? (C13h2)@(a,.§)},
1

l\)l"

1 1
fo< 5 {(93/C16) Xa:[@eh]i +0—3C15h2|\6tQ(S) - ¢>6ns||§o},

where  7(9,s) 1= || ol D*(,5(t)) || (- Finally, it is
sufficient to choose 0; =«/2, 0, =ex/2, and 0;=
C]()EK/Z. O

Now we use some results of Ohlberger [8], which estab-
lished the stability of the decoupled and nonlinear semi dis-
crete schemes (see [8, Lemma 5.12 and 5.13]).

Lemma 17. Let (U,p,5) be the solution of (39)—(41), and let
(wp, py,sn) be the solution of (36)—(38). Then there exist
constants Cy7,C1s, C19 > 0 (with C13 = C3(¢)), independent
of h, such that for all t € J the following estimates hold:
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Na(@) |0y + 12Ol o) < Ci7, (62)
50|z~ (@) < Ciss (63)

(0l ) < Coo (7 + u(e) = wi(0) 0 ). (64)

Theorem 18. Let (w,,p,,s;) be the solution of (36)—38),
(,p,3) the solution of (39)~(41) and (u,p,s) the weak solu-
tion of (23)—(25). Then, exists a constant K,y > 0, indepen-
dent of h and e, such that for all T €J the following
estimate holds

[ (wy, — ﬁ)(f)HH(div;Q) + (s _ﬁ>(f)”L2(g)
< Kio(1+ 1800) () ) 165 = 1) (D) 20

Proof. Subtracting (29), (30) from (39), (40) we get

B(“Za (ph) = (F(sh) - F(S>7(ph)7
A(sh;u;,vh) +B(Vh,p;;)
= (G(sn) — G(s),v4) + A(s;0,v)

which is a discrete saddle point problem in (uj,p;) :=
(w, —u,p, — p). Finally, the theorem follows from [20,
Remark 1.3] and the Lipschitz continuity of F(-), G(-)
and a(-). O

7A(Sh;ﬁavh)a

Theorem 19. Let § be the solution of (41) and let (wy, p,,s;)
be the solution of (36)—(38). Then, exists constants K, > 0
and Ky, > 0, independent of h and ¢, such that

T
2 2
6K/o Z[eh]a + llen(®)ll2(0)
a

where e, :== 5 — sy,

< (TK“hz) eXp(ZKIZT)7 (65)

Proof. Subtracting Eq. (35) from Eq. (41), we obtain

(Li(up)er); + T

X Z [gj/(“§§jv§l)
= ¢ (3151 = 9)), + (Q(s) = O(sn) .

J

- gj/(“h% Shjs Shi) — gj/(llh; €, ez)}

Multiplying this last equation by |7;|e; and summing over
al T, € 7, yields after substraction of (9,3),

2d Z|T| &g+ lalG

ac.o/

(5—9) +Z|T|e/ O(sn))

(Ly(uy)en, en),

—¢Z|T|e,

where G, := g,(u;3;,5/) — g,(W; 845, 01) — ,(W5 €, /), With
Jj=T/ and [ = T,. On the other hand by the first inequal-
ity of Lemma 13 we obtain

GKZ[eh —|—§EZe

t; +ts + 1o,

with
b= Z[ 1o (8a(Whs Sty s01) — 84 (0555, 51)),
tg == ¢ZT€1
ty 1= ZT,-ej

7

S—S

O(sn));-

To obtain bounds for 77, tg and ty we follows the main
ideas of Theorem 15. From Lemma 11 and Theorem 16,
we have that, for each 6, 6,,0; > 0, there exists constants
C; > 0,i=20,21,22,23,24, such that

1 1
t7 < 3 {01 ;[ehﬁ +0_1C20h2||inx(9) }:
12
t5< ¢ (Z Tjej.) (Z T,(0,(5 s))j.>
J J

1 _ _
< qbi{()zueh”?z(m +0, ! Ha;(S—S)HiZ(Q)}

1/2

1 _ -
<¢2{ezneh|?zwezl[cmzatszz(wczzz [m@)ats}i}}

a

1 :
<5 {Oelleslli@ + 03" [Ca?l0usIaig) + Casi?] },

1 1
nel {eznehulz +9—3Cz4h2|\Qfo(m}-

Therefore, with 0, = ex, we get that there exist K, K, > 0
such that

€K

1d
5 leal + 5 dt”eh( )”%2(9) + Kk’

2
< Killen(®) 720

After integration with respect to time we get the statement
of the proof by applying the Gronwall’s Lemma and using
e (0)=0

/ le + Slend)lg

< T(Ki k) exp(2K,T). O

Proof of the Theorem 9. Applying the triangle inequality,
Theorems 14 and 18 we get:

o =Wl aive) () + 12 = Pill2g0) ()
< u— ﬁ”H(div;Q)(t) + [lu— uh”H(div;Q)(t) + llp _IBHLZ(Q)(Z)
+ 17 = pall 20 (1)
< Cash + Coglls — Sh”Lz(Q)(t)'

On the other hand, applying Lemma 11, Theorems 15 and
19, we obtain
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s _ShHiZ(Q)(t)
2(ls = 24(6) 20 1) + I14(5) = 51 20, 0
L2(Q) h hilL2(Q)
< 2{ (Corhlslaia) + 14(5) = 1u(9)l )
+ (I4(s) = 5l h@)

< z{c27h2||s|zz<m + (Z 7a(s) — 2+ 115 - shlﬁz@) }

2{C27h2||s||2,2(9> + [nghz + (TK“]’[Z) exp(2K12T)]}
< Cooh® + (2TK 1 1) exp(2K 1, T).

Since this holds for all ¢ € J, we have proven the L*-esti-
mate in time. Finally, with Gronwall’s Lemma, Theorems
15, and 19, we have

GK/Z[}, —Sh ] dt
J

acso/

<2|fl€/ 1) —su(t dt—l—eic/ Zlh d
ac.of ac.of

< C30h + (ZTKH]’Z )exp(ZKlzT)

~
| I —

7. Convergence of the full discrete scheme

Lemma 20. Let (u,p,s) be the weak solution of (23)~(25), §
the solution of (41) and S the solution of (45). Define
moreover e} = S" — ("), 0<n< M. Then, there exist
constants C; > 0, i = 31,32,33, independent of h and ¢, such
that:

||en+1 *62”12(9)

12
V2At .
SThe (Y lela]  +Cahllfll <

m{ /

+C33\/;5

Proof. Let 0 <n <
we have

a2
o (s)

ds + Canh|1+ ||atS||Lx(J;H2(Q))} }
Q)

[l )

M. Subtracting Eq. (41) from Eq. (45)

e;l+1 en +

(L u(e)5), - Luws), ()]
= Ar(@s) (") = 5,(") +5,(1).

Thus, replacing
(Li(u(2)S"); —

where

Gj = gjl( (1 )7S;’7Sn)

b
(t

in this last equation the

(La(w)s"), (") =

identity

(Ly(u(t"))en); + ﬁ > G,

gjl( ( )731751)
(66)

gjl( (¢ )76176 ) —

we obtain

Ol = —% (Li(u(t"))en); + |Tl| 2 Gﬂ}

+A1(@ss) (1) = 5,("1) +5,(2"). (67)
Multiplying by (e7*' — ¢7)|T;| and summing up over ;j this
yields:
||en+1 - eZ”?Zm)

At B B
<—|(Ly(u(? ))e}neh+1 7eh)h|

¢
A G aon
tn+l

/ (35)(0) = 0us;(0), ;" — ) do
;
At
+5 2l =eld Il
j !

At 1/2 1/2
(f) [eT(Z[eZﬁ) +C3lh||f|Lx(Q)] <Z[en+l 62]i>

+ At /
m LZ(Q)

1/2
7 7 At 1 J
< ! - ehlzz<m+g<2[eh“—eh1§> (Cxshlflia))-

a

Mt

+

ez 2

@(5)

ds+[05 — arSHLx(J;LZ(Q)))

Dividing by [|ej™" — ¢}l 2 We get:

1/2
. V2At "
||€ + _eh“l (@) SThe ho r Z[ehﬁ +C31thHLx(Q)
P 2
+At</ =) ds+ ||at§_afs|Lx(J;L2(Q))>
P 12(Q)
+sz\/— Hf”L’“

Finally, with Theorem 16 and triangle inequality,
[0:5 — atS”i%(J;LZ(Q))
2(||6,§ - a,lh(s)Him wi2@) T 104 (s) — aﬁ“iw;ﬁm)))
= 21105 = ()}~ ey + 10:da(s) = 8
< Cual® + C3shP |05 17 2 - O

2
zs|\L>C(J;L2(Q)))

Theorem 21. Let u, 5 and S be defined as in (23), (41), and
(45), respectively. If At satisfy the CFL condition

¢ x
PRI E
h 4 ¢r
then we have for ¢} := Sn— 5(r"), 0 < n, N <M, there exist

constants K3,K4,K 5 > 0, independent of h and e, such
that:

(68)
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1 T K
316l < Ko7 (52+ 7 Mo

T(T 0\, .
+5 (M 2)(5 + Kiuh)’,
wzth 9 = 2¢Ks/Ke, 0

[n+
ft” ” arl( )”1,2 ds.

Proof. Following the ideas of Lemma 20 and by sub-
traction of Eq. (41) from Eq. (45), multiplying with
¢'|T;| and summing up over j yields with @® —b*—

(a—b) = 2(ab — b*), we have

1 7 At n 7 7
(”ehH“z ||eh||?2(g)) +$(Lh(“(t ))€hs €,

Y S e

acd

where G, is given by Eq. (66) and & :=
S, 155 at- )20y ds + 1103 — 0usl~(s2(0)-  Applying  the
coerciveness of Ly(u(¢")), we obtain

=ke/2¢, MAt=T and & :=

1 7 7 2 w
5 ||e e eyl + At€leyll 2 q)

At
(” h+1||1 HeZH?Z(Q)) "‘E’“Z[Qﬂi < to + i + o,
a

where

ho :== 5 ||en+1 - 32”?2(9)

t = Até‘”HehH,z

lp = _AIZ[ ]aG:v

acd

with G := g,(u(?"); Sj, Sn) — g, (u(t");57,5]

Lemma 20 that for any 6, 6" > 0

Q) (3) St i

). We have from

At
+%(é"* + Kuah)?,
K5 At ) At % 2
t < —~ >0 [eh] ?0(5 + K14h)
AtO* 2 WAt
hy < - d [eh]a+c3657||f\|mg>~

Taking into account that the CFL condition (68), we

obtain
1 112
5 (e @) = b))
W 5
I+

At
< Ki3At <d)2 +
with 0 := 2¢K5s/ke and 0" := ke/2¢. Finally, summing up
over n from 0 to N—1 we get the statement of the
theorem. [

At 0
E (Al +2> ((«50* +K14h)2,

Theorem 22. Let (Uy, Py, S,) be the solution of (42)—(44),
(@, p, ) the solution of (39)—(45) and (u, p, c) the weak solu-

tion of (23)—(25). Then, there exists a constant K5 > 0, inde-
pendent of h and e, such that

105 — Wil vy + 125 — 2"l 20
< Kio (I8 0) + 1) (") = Sila)

Proof. The proof is the same as the proof of Theorem 18 if
(s, py,, sn) 1s replaced by (U, Py, S;). O

Theorem 23. Let S, be the solution of Eq. (44) and S the
solution of Eq. (45). If At satisfy the CFL condition

At ¢ K

then for the error e} := S — 85,0 < n, N < M, there exists a
constant K7 > 0, independent of h and e, such that

T( T "
o <K (112 ) [ + 1900

with MAt =T

Proof. Subtracting Eq. (44) from Eq. (45), we obtain

e;Hrl o i (Lh(Un) )

At 1 At
:Mﬂg@*ﬂ@%‘
where G 1=,/ (Uj:5).57) — g, (u(t"):87,57) +&,(Upie). ).

Then, using the identity a*> — b* — (a — b) =2(ab—b*), mul-
tiplying by €}|7;| and summing over j, we deduce

(O(Sh); |

l 1 n n
_{HehHH?Z @ ~ ||eh||/2 }+ P (Lh(U )€ €

n2 At n
eillp +— Z[eh]aGa
Ze 7,1](2ts

Hen+1

)= (es),].

Applying the coerciveness of L, (cf. Lemma 11) , we obtain

At
{16 i = el } + e et

Al 1/2 1/2
—He”“—e;.\lzz +$<Z[e}i]§> (Z(G2)2>

Zum[
where G, = g,(U}; 87, 57) — g, (u(t"); S;’,S”) On the other
hand, using the Eq. (67), and applying similar estimates
of the proof of Lemma 20, there exists a constant

C37 > 0 such that

), = (o),
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1, 2 A2ET? ”»
B ||‘3h+1 - ehle(Q) < W Z[eh]a

+c37(5)2[|f||2 + 10l +(0)|
¢ 1°(Q) 1°(Q)

Therefore, using the CFL condition (69), there exists a
constant K7 > 0 such that

1 n 2 7112
5 {ller e = 1o}
At (At W 5 5
<& (54 ) [0 + 100
Finally, summing up over n from 0 to N —1 we get the
statement of the theorem. [J

Proof of the Theorem 10. The proof of this result is similar
to that of Theorem 9. The triangle inequality, Theorems 14
and 22 yield for all ' € J,,

Table 1
Numerical values for physical parameters
Symbol Value Unit
Absolute permeability k 1.78 x 10711 (m?]
Liquid density Dw 1011 [kg/m?’]
Gas density Pn 1.16 [kg/m?]
Porosity ¢ 0.33 -]
Liquid viscosity Ly 1073 kg/m s]
Gas viscosity U 1.85%x 1073 kg/ms]
Residual water saturation Swr 0 ]
Initial water saturation 9, 0.4343 -]
VG-parameter n 1.411 ]
VG-parameter o 1.35 x 107 [1/Pa]
Heap slope 0 n/4 rad.
Heap width w 25 [m]
Heap height H 5 [m]
x10*
7 T T T T T
&1 s, (t=0)
5t
— ar
©
e,
o
Q 3r
oL
ns
0 ! ! ! ! !
0.4 0.5 0.6 0.7 0.8 0.9
s, ]
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(") = Uillyaivie) + lP(") = Pyll 20
< @) = 0|l aive) + 110" = Ubllyaive)
+ (") = 2"l 20 + 17" = Pill 2
< Kih+ 1~<zHS(t”) - SZHLZ(Q)-
We get by the triangle inequality
(") = Sill 2@y < lls(#") = Lu() (@) 20) + [Ha(s)(2")
- §n||L2(Q) + Hgn - SZHLZ(Q)'

The three terms of the right hand side of this inequality can
be estimate by Lemma 11, Theorems 15, 21, and 23, as
follow: there exist constants K3, K4, Ks > 0, such that,

s(") = In(s) () 120 < Kk
74 (s)(£") — 8" iZ(Q)

<2(I) () = 5 ey + 15 = 520

. 2(2 1)) — 5 + 1506 — E"n;@))

a

W T Ko 5
< K4{ [@‘F T<M¢2 +;>] €17 (@)

h 2 h2T2
+ (L) 106) — 90l + 216

€K

r(T_ ¢ :
—|—=+— (" +Ksh) 3.
+2(M+K€)( + 5)}
on n||2 T T h2 2 2
13 = St < Ko (575 + ) [16 0+ 101+ )

This completes the proof. [

s, (t=0)

rw

rn
0.3 : B B

0.2+ 1
01 i
s, (t=0)

0 . Lo . |
0 0.2 0.4 0.6 0.8 1

s, [-]

Fig. 2. Capillary pressure p. and relative permeability &, for VG model.
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0.75 T T T T T T T T

P1=(13.57[m],5.00[m])

0.70 -

0.651

0.60 -

s, [F]

ossl P2=(13.17[m],2.95[m])

0.50 -

o ‘
VO 6 16 26 36 46 56 66 76 86
t[hr]

Fig. 3. Evolution of sy, in two points of Q.

8. Numerical results

We show the behavior of our numerical scheme for the
same numerical examples considered by Cariaga et al.
[21,23]. The numerical solution of system (1)—(6) require
an explicit definition for p.(-) and ky(:), = w,n. In our
simulations we prefer the Van Genuchten (VG) model
(see [13]), where

L, im ”
pelsw) =~ (5.1 =)',

Jerw (sw) = S5(1 = (1= SJ/™)")?,
kn(sw) = (1 — Se)v(l - S;/m)2m7

with S, (sw) = e the effective saturation and s, the
residual water saturation [13]. The terms ¢ and y are form
parameters which describe the connectivity of the pores.
Generally, ¢=1 and y=1 For an analysis of (VG)
parameters, in the heap leaching context (see [21]). In
Table 1 we show our choice of parameters in the heap
leaching context. Our choice is similar to that of Li
[22]. On the other hand, our computational code consider
an implicit scheme for the MFE method to obtain an
approximation of p(x,#') and wu(x,7""'), where the
liquid saturation s,, is replaced by an approximation of
sw(X, "), while that the saturation equation is solved by a
cell centered FV implicit scheme to obtain an approxi-
mation of s,,(x, "), where the total velocity u is replaced
by an approximation of wu(x,#), [23,24]. We use a
damped inexact Newton algorithm for solving the non-
linear system of equations, [25,13]. The capillary
pressure, p. and the relative permeability, k., used are
plotted in Fig. 2. A plot of the evolution of s, in two
points Pl = (13.57,5.00) and P2 = (13.17,2.95) in the
heap Q is given in Fig. 3, for an irrigation ratio
R = 5.34[It/hr/m?].
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